8.1.2 方案

    样例数据:两个分别包含200个数据点的向量:

    当可视化含多个组别的数据时,一些绘图方法通常需要一个数据框:一列给分组变量,一列给测量值。

    1. cond <- factor(rep(c("A", "B"), each = 200))
    2. data <- data.frame(cond, rating = c(rating, rating2))
    3. head(data)
    4. #> cond rating
    5. #> 1 A -1.2071
    6. #> 2 A 0.2774
    7. #> 3 A 1.0844
    8. #> 4 A -2.3457
    9. #> 6 A 0.5061
    10. hist(rating)

    1. # 每0.6一个刻度
    2. boundaries <- seq(-3, 3.6, by = 0.6)
    3. boundaries
    4. #> [1] -3.0 -2.4 -1.8 -1.2 -0.6 0.0 0.6 1.2 1.8 2.4
    5. #> [11] 3.0 3.6
    6. hist(rating, breaks = boundaries)

    8.1 直方图和密度图 - 图3

    8.1.2.1 多个组别的核密度图

    代码来自:

    1. plot.multi.dens <- function(s) {
    2. junk.x = NULL
    3. junk.y = NULL
    4. junk.x = c(junk.x, density(s[[i]])$x)
    5. junk.y = c(junk.y, density(s[[i]])$y)
    6. }
    7. xr <- range(junk.x)
    8. yr <- range(junk.y)
    9. plot(density(s[[1]]), xlim = xr, ylim = yr, main = "")
    10. for (i in 1:length(s)) {
    11. lines(density(s[[i]]), xlim = xr, ylim = yr, col = i)
    12. }
    13. }
    14. plot.multi.dens(list(rating, rating2))

    8.1 直方图和密度图 - 图6