8.1.2 方案
样例数据:两个分别包含200个数据点的向量:
当可视化含多个组别的数据时,一些绘图方法通常需要一个数据框:一列给分组变量,一列给测量值。
cond <- factor(rep(c("A", "B"), each = 200))
data <- data.frame(cond, rating = c(rating, rating2))
head(data)
#> cond rating
#> 1 A -1.2071
#> 2 A 0.2774
#> 3 A 1.0844
#> 4 A -2.3457
#> 6 A 0.5061
hist(rating)
# 每0.6一个刻度
boundaries <- seq(-3, 3.6, by = 0.6)
boundaries
#> [1] -3.0 -2.4 -1.8 -1.2 -0.6 0.0 0.6 1.2 1.8 2.4
#> [11] 3.0 3.6
hist(rating, breaks = boundaries)
8.1.2.1 多个组别的核密度图
代码来自:
plot.multi.dens <- function(s) {
junk.x = NULL
junk.y = NULL
junk.x = c(junk.x, density(s[[i]])$x)
junk.y = c(junk.y, density(s[[i]])$y)
}
xr <- range(junk.x)
yr <- range(junk.y)
plot(density(s[[1]]), xlim = xr, ylim = yr, main = "")
for (i in 1:length(s)) {
lines(density(s[[i]]), xlim = xr, ylim = yr, col = i)
}
}
plot.multi.dens(list(rating, rating2))