mindarmour.defenses
- class
AdversarialDefense
(network, loss_fn=None, optimizer=None)[source] Adversarial training using given adversarial examples.
- Parameters
network (Cell) – A MindSpore network to be defensed.
loss_fn (Functions) – Loss function. Default: None.
optimizer () – Optimizer used to train the network. Default: None.
Examples
defense
(inputs, labels)[source]Enhance model via training with input samples.
- Parameters
inputs (numpy.ndarray) – Input samples.
labels () – Labels of input samples.
Returns
- numpy.ndarray, loss of defense operation.
- class
mindarmour.defenses.
(network, attacks, loss_fn=None, optimizer=None, bounds=(0.0, 1.0), replace_ratio=0.5)[source] Adversarial defense with attacks.
- Parameters
attacks (list[]) – List of attack method.
loss_fn (Functions) – Loss function. Default: None.
bounds (tuple) – Upper and lower bounds of data. In form of (clip_min,clip_max). Default: (0.0, 1.0).
replace_ratio () – Ratio of replacing original samples withadversarial, which must be between 0 and 1. Default: 0.5.
Raises
- ValueError – If replace_ratio is not between 0 and 1.
Examples
defense
(inputs, labels)Enhance model via training with adversarial examples generated from input samples.
- Parameters
inputs () – Input samples.
labels (numpy.ndarray) – Labels of input samples.
Returns
- numpy.ndarray, loss of adversarial defense operation.
- class
mindarmour.defenses.
NaturalAdversarialDefense
(network, loss_fn=None, optimizer=None, bounds=(0.0, 1.0), replace_ratio=0.5, eps=0.1) - Adversarial training based on FGSM.
Reference:
- Parameters
Examples
- class
ProjectedAdversarialDefense
(network, loss_fn=None, optimizer=None, bounds=(0.0, 1.0), replace_ratio=0.5, eps=0.3, eps_iter=0.1, nb_iter=5, norm_level='inf') - Adversarial training based on PGD.
Reference:
- Parameters
network (Cell) – A MindSpore network to be defensed.
loss_fn (Functions) – Loss function. Default: None.
optimizer () – Optimizer used to train the nerwork. Default: None.
bounds (tuple) – Upper and lower bounds of input data. In form of(clip_min, clip_max). Default: (0.0, 1.0).
replace_ratio () – Ratio of replacing original samples withadversarial samples. Default: 0.5.
eps (float) – PGD attack parameters, epsilon. Default: 0.3.
eps_iter () – PGD attack parameters, inner loop epsilon.Default:0.1.
nb_iter (int) – PGD attack parameters, number of iteration.Default: 5.
norm_level () – Norm type. ‘inf’ or ‘l2’. Default: ‘inf’.
Examples