3.10. 多层感知机的简洁实现

    1. import d2lzh as d2l
    2. from mxnet import gluon, init
    1. net = nn.Sequential()
    2. net.add(nn.Dense(256, activation='relu'),
    3. nn.Dense(10))
    4. net.initialize(init.Normal(sigma=0.01))
    1. batch_size = 256
    2. train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
    3. loss = gloss.SoftmaxCrossEntropyLoss()
    4. trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': 0.5})
    5. num_epochs = 5
    6. d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, batch_size, None,
    7. None, trainer)
    • 通过Gluon可以更简洁地实现多层感知机。
    • 使用其他的激活函数,看看对结果的影响。