3.10. 多层感知机的简洁实现
- import d2lzh as d2l
- from mxnet import gluon, init
- net = nn.Sequential()
- net.add(nn.Dense(256, activation='relu'),
- nn.Dense(10))
- net.initialize(init.Normal(sigma=0.01))
- batch_size = 256
- train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
- loss = gloss.SoftmaxCrossEntropyLoss()
- trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': 0.5})
- num_epochs = 5
- d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, batch_size, None,
- None, trainer)
- 通过Gluon可以更简洁地实现多层感知机。
- 使用其他的激活函数,看看对结果的影响。