Medical Imaging
Helpers for working with DICOM files
get_dicom_files
[source]
Get dicom files in path
recursively, only in folders
, if specified.
Path.dcmread
[source]
Path.dcmread
(fn
:Path
,force
=False
)
Open a DICOM
file
fastai.medical.imaging
uses pydicom.dcmread
to read a DICOM file. To view the header
of a DICOM, specify the path
of a test file and call dcmread
.
TEST_DCM = Path('images/sample.dcm')
dcm = TEST_DCM.dcmread()
dcm
Dataset.file_meta -------------------------------
(0002, 0000) File Meta Information Group Length UL: 176
(0002, 0001) File Meta Information Version OB: b'x00x01'
(0002, 0002) Media Storage SOP Class UID UI: CT Image Storage
(0002, 0003) Media Storage SOP Instance UID UI: 9999.180975792154576730321054399332994563536
(0002, 0010) Transfer Syntax UID UI: Explicit VR Little Endian
(0002, 0012) Implementation Class UID UI: 1.2.40.0.13.1.1.1
(0002, 0013) Implementation Version Name SH: 'dcm4che-1.4.38'
-------------------------------------------------
(0008, 0018) SOP Instance UID UI: ID_e0cc6a4b5
(0008, 0060) Modality CS: 'CT'
(0010, 0020) Patient ID LO: 'ID_a107dd7f'
(0020, 000d) Study Instance UID UI: ID_6468bdd34a
(0020, 000e) Series Instance UID UI: ID_4be303ae64
(0020, 0010) Study ID SH: ''
(0020, 0037) Image Orientation (Patient) DS: [1.000000, 0.000000, 0.000000, 0.000000, 0.978148, -0.207912]
(0028, 0002) Samples per Pixel US: 1
(0028, 0004) Photometric Interpretation CS: 'MONOCHROME2'
(0028, 0010) Rows US: 256
(0028, 0011) Columns US: 256
(0028, 0030) Pixel Spacing DS: [0.488281, 0.488281]
(0028, 0100) Bits Allocated US: 16
(0028, 0101) Bits Stored US: 16
(0028, 0102) High Bit US: 15
(0028, 0103) Pixel Representation US: 1
(0028, 1050) Window Center DS: "40.0"
(0028, 1051) Window Width DS: "100.0"
(0028, 1052) Rescale Intercept DS: "-1024.0"
(0028, 1053) Rescale Slope DS: "1.0"
(7fe0, 0010) Pixel Data OW: Array of 131072 elements
type(dcm)
pydicom.dataset.FileDataset
class
TensorDicom
[source]
TensorDicom
(x
, **kwargs
) ::
Inherits from TensorImage
and converts the pixel_array
into a
PILDicom
() ::PILBase
This class represents an image object. To create :py:class:~PIL.Image.Image
objects, use the appropriate factory functions. There’s hardly ever any reason to call the Image constructor directly.
- :py:func:
~PIL.Image.open
- :py:func:
~PIL.Image.new
- :py:func:
~PIL.Image.frombytes
Path.png16read
[source]
Path.png16read
()
None
[source]
dcm.pixels
tensor([[-1024., -1024., -1024., ..., -1024., -1024., -1024.],
[-1024., -1024., -1024., ..., -1024., -1024., -1024.],
[-1024., -1024., -1024., ..., -1024., -1024., -1024.],
...,
[-1024., -1024., -1024., ..., -1024., -1024., -1024.],
[-1024., -1024., -1024., ..., -1024., -1024., -1024.],
[-1024., -1024., -1024., ..., -1024., -1024., -1024.]])
None
[source]
uses RescaleSlope
and RescaleIntercept
values to correctly scale the image so that they represent the correct tissue densities. You can observe what scaled_px
does by viewing the the pixel distribution of a dicom image. The histogram below displays the current pixel distribution which shows a pixel range between -1133
and 2545
.
plt.hist(dcm.pixels.flatten().numpy());
As shown in the header
of the test image the RescaleIntercept
has a value of -1024.0
and a RescaleSlope
value of 1.0
. will scale the pixels by these values.
plt.hist(dcm.scaled_px.flatten().numpy());
The pixel distibution is now between -2157
and 1521
array_freqhist_bins
array_freqhist_bins
(n_bins
=100
)
A numpy based function to split the range of pixel values into groups, such that each group has around the same number of pixels
Tensor.freqhist_bins
Tensor.freqhist_bins
(n_bins
=100
)
A function to split the range of pixel values into groups, such that each group has around the same number of pixels
For example with n_bins
set to 1
this means the bins will be split into 3 distinct bins (the beginning, the end and the number of bins specified by n_bins
.
t_bin = dcm.pixels.freqhist_bins(n_bins=1)
t_bin
tensor([-1076., 40., 2375.])
plt.hist(t_bin.numpy(), bins=t_bin, color='c')
plt.plot(t_bin, torch.linspace(0,1,len(t_bin)));
with at 100
t_bin = dcm.pixels.freqhist_bins(n_bins=100)
t_bin
tensor([-1076., -1026., -1024., -1021., 28., 30., 31., 32., 33.,
34., 35., 36., 37., 38., 39., 40., 41., 42.,
44., 48., 52., 58., 66., 72., 76., 80., 85.,
91., 94., 98., 103., 111., 123., 161., 219., 478.,
829., 999., 1027., 1038., 1044., 1047., 1049., 1050., 1051.,
1052., 1053., 1054., 1055., 1056., 1057., 1058., 1059., 1060.,
1062., 1066., 1108., 1265., 1453., 1616., 1741., 1838., 1943.,
2051., 2220., 2375.])
plt.hist(t_bin.numpy(), bins=t_bin, color='c'); plt.plot(t_bin, torch.linspace(0,1,len(t_bin)));
Tensor.hist_scaled_pt
Tensor.hist_scaled_pt
(brks
=None
)
Tensor.hist_scaled
Tensor.hist_scaled
(brks
=None
)
Scales a tensor using freqhist_bins
to values between 0 and 1
The test image has pixel values that range between -1000
and 2500
plt.hist(dcm.pixels.flatten().numpy(), bins=100);
hist_scaled
provides a way of scaling the input pixel values to between 0
and 1
Dataset.hist_scaled
Dataset.hist_scaled
(brks
=None
,min_px
=None
,max_px
=None
)
Pixels scaled to a min_px
and max_px
value
data_scaled = dcm.hist_scaled()
plt.imshow(data_scaled, cmap=plt.cm.bone);
data_scaled = dcm.hist_scaled(min_px=100, max_px=1000)
plt.imshow(data_scaled, cmap=plt.cm.bone);
Dicom images can contain a high amount of voxel values and windowing can be thought of as a means of manipulating these values in order to change the apperance of the image so particular structures are highlighted. A window has 2 values:
l
= window level or center aka brightnessw
= window width or range aka contrast
Tensor.windowed
Scale pixel intensity by window width and window level
Dataset.windowed
Dataset.windowed
(w
,l
)
plt.imshow(dcm.windowed(*dicom_windows.brain), cmap=plt.cm.bone);
class
TensorCTScan
TensorCTScan
(x
, **kwargs
) ::TensorImageBW
Inherits from and converts the pixel_array
into a TensorCTScan
tensor_ct = TensorCTScan(dcm.pixel_array)
tensor_ct.show();
This class represents an image object. To create :py:class:~PIL.Image.Image
objects, use the appropriate factory functions. There’s hardly ever any reason to call the Image constructor directly.
- :py:func:
~PIL.Image.open
- :py:func:
~PIL.Image.new
- :py:func:
~PIL.Image.frombytes
Dataset.show
[source]
Dataset.show
(frames
=1
,scale
=True
,cmap
=<matplotlib.colors.LinearSegmentedColormap object at 0x7fc7bbbefb80>
,min_px
=-1100
,max_px
=None
, **kwargs
)
Adds functionality to view dicom images where each file may have more than 1 frame
scales = False, True, dicom_windows.brain, dicom_windows.subdural
for s,a,t in zip(scales, subplots(2,2,imsize=4)[1].flat, titles):
dcm.show(scale=s, ax=a, title=t)
dcm.show(cmap=plt.cm.gist_ncar, figsize=(6,6))
Some dicom datasets such as the is a dataset where each image has multiple frames per file (hundreds in this case). By default the show
function will display 1 frame but if the dataset has multiple frames you can specify the number of frames to view.
Dataset.show
Dataset.show
(frames
=1
,scale
=True
,cmap
=<matplotlib.colors.LinearSegmentedColormap object at 0x7fc7bbbefb80>
,min_px
=-1100
,max_px
=None
, **kwargs
)
Adds functionality to view dicom images where each file may have more than 1 frame
dcm.show()
Dataset.pct_in_window
Dataset.pct_in_window
(dcm
:Dataset
,w
,l
)
% of pixels in the window (w,l)
dcm.pct_in_window(*dicom_windows.brain)
0.19049072265625
pct_in_window
can be used to check what percentage of the image is composed of meaningful pixels (pixels within the specified window)
uniform_blur2d
uniform_blur2d
(x
,s
)
Uniformly apply blurring
ims = dcm.hist_scaled(), uniform_blur2d(dcm.hist_scaled(), 20), uniform_blur2d(dcm.hist_scaled(), 50)
show_images(ims, titles=('original', 'blurred 20', 'blurred 50'))
gauss_blur2d
gauss_blur2d
(x
,s
)
Apply gaussian_blur2d kornia filter
ims = dcm.hist_scaled(), gauss_blur2d(dcm.hist_scaled(), 20), gauss_blur2d(dcm.hist_scaled(), 50)
show_images(ims, titles=('original', 'gauss_blur 20', 'gauss_blur 50'))
Images are often affected by random variations in intensity values, called noise. Gaussian noise contains variatons in intensity that are drawn from a Gaussian or normal distribution. A Guassian filter is usually used to blur edges and remove smaller or thinner areas in order to preserve the most important information
Tensor.mask_from_blur
Tensor.mask_from_blur
(x
:Tensor
,window
,sigma
=0.3
,thresh
=0.05
,remove_max
=True
)
Create a mask from the blurred image
Dataset.mask_from_blur
Dataset.mask_from_blur
(x
:Dataset
,window
,sigma
=0.3
,thresh
=0.05
,remove_max
=True
)
Create a mask from the blurred image
mask = dcm.mask_from_blur(dicom_windows.brain, sigma=0.9, thresh=0.1, remove_max=True)
wind = dcm.windowed(*dicom_windows.brain)
_,ax = subplots(1,3)
show_image(wind, ax=ax[0], title='window')
show_image(mask, alpha=0.5, cmap=plt.cm.Reds, ax=ax[1], title='mask')
show_image(wind, ax=ax[2])
show_image(mask, alpha=0.5, cmap=plt.cm.Reds, ax=ax[2], title='window and mask');
mask2bbox
mask2bbox
(mask
)
bbs = mask2bbox(mask)
lo,hi = bbs
show_image(wind[lo[0]:hi[0],lo[1]:hi[1]]);
crop_resize
crop_resize
(,crops
,new_sz
)
px256 = crop_resize(to_device(wind[None]), bbs[...,None], 128)[0]
show_image(px256)
px256.shape
torch.Size([1, 128, 128])
Comparing the original image with the image from using the mask
and crop_resize
function
Tensor.to_nchan
[source]
Tensor.to_nchan
(x
:Tensor
,wins
,bins
=None
)
Dataset.to_nchan
[source]
Dataset.to_nchan
(x
:Dataset
,wins
,bins
=None
)
to_nchan
takes a tensor or a dicom as the input and returns multiple one channel images (the first depending on the choosen windows
and a normalized image). Setting bins
to 0
only returns the windowed image.
show_images(dcm.to_nchan([dicom_windows.brain], bins=0))
show_images(dcm.to_nchan([dicom_windows.brain], bins=None))
Tensor.to_3chan
[source]
Tensor.to_3chan
(x
:Tensor
,win1
,win2
,bins
=None
)
Dataset.to_3chan
[source]
show_images(dcm.to_nchan([dicom_windows.brain,dicom_windows.subdural,dicom_windows.abdomen_soft]))
Tensor.save_jpg
[source]
Tensor.save_jpg
(x
:Dataset'>)
,path
,wins
,bins
=None
,quality
=90
)
Save tensor or dicom image into jpg
format
Dataset.save_jpg
[source]
Dataset.save_jpg
(x
:Dataset'>)
,path
,wins
,bins
=None
,quality
=90
)
Save tensor or dicom image into jpg
format
Tensor.to_uint16
[source]
Tensor.to_uint16
(x
:Dataset'>)
,bins
=None
)
Convert into a unit16 array
Dataset.to_uint16
[source]
Dataset.to_uint16
(x
:Dataset'>)
,bins
=None
)
Convert into a unit16 array
Tensor.save_tif16
[source]
Tensor.save_tif16
(x
:Dataset'>)
,path
,bins
=None
,compress
=True
)
Save tensor or dicom image into tiff
format
Dataset.save_tif16
[source]
Dataset.save_tif16
(x
:Dataset'>)
,path
,bins
=None
,compress
=True
)
Save tensor or dicom image into tiff
format
_,axs=subplots(1,2)
with tempfile.TemporaryDirectory() as f:
f = Path(f)
dcm.save_jpg(f/'test.jpg', [dicom_windows.brain,dicom_windows.subdural])
show_image(Image.open(f/'test.jpg'), ax=axs[0])
dcm.save_tif16(f/'test.tif')
show_image(Image.open(str(f/'test.tif')), ax=axs[1]);
Dataset.set_pixels
[source]
Dataset.set_pixels
(px
)
Dataset.zoom
[source]
Dataset.zoom
(ratio
)
Zoom image by specified ratio
Check to see the current size of the dicom image
dcm.pixel_array.shape
(256, 256)
dcm.zoom(7.0)
dcm.show(); dcm.pixel_array.shape
(1792, 1792)
Dataset.zoom_to
[source]
Dataset.zoom_to
(sz
)
Change image size to specified pixel size
dcm.zoom_to(200); dcm.pixel_array.shape
(200, 200)
None
[source]
dcm2 = TEST_DCM.dcmread()
dcm2.zoom_to(90)
test_eq(dcm2.shape, (90,90))
dcm2 = TEST_DCM.dcmread()
dcm2.zoom(0.25)
dcm2.show()
Dataset.as_dict
[source]
Dataset.as_dict
(px_summ
=True
,window
=(80, 40)
)
Convert the header of a dicom into a dictionary
as_dict
takes in 2 parameters: px_summ
which by default is set to True
and this returns additional stats such as minimal pixel value, maximum pixel value, the mean pixel value and the image standard deviation. The window
parameter calculates the pct_in_window
value depending on the window
that is specified.
dcm.as_dict(px_summ=True, window=dicom_windows.brain);
Creating a dataframe of the values within the header
of the dicom
pneumothorax_source = untar_data(URLs.SIIM_SMALL)
items = get_dicom_files(pneumothorax_source, recurse=True, folders='train')
dicom_dataframe = pd.DataFrame.from_dicoms(items, window=dicom_windows.brain)
dicom_dataframe.head(2).T.tail(5)
class
DicomSegmentationDataLoaders
[source]
DicomSegmentationDataLoaders
(*loaders
,path
='.'
,device
=None
) ::
Basic wrapper around DICOM DataLoaders
with factory methods for segmentation problems
path = untar_data(URLs.TCGA_SMALL)
codes = np.loadtxt(path/'codes.txt', dtype=str)
fnames = get_dicom_files(path/'dicoms')
label_func = lambda o: path/'labels'/f'{o.stem}.png'
dls = DicomSegmentationDataLoaders.from_label_func(path, fnames, label_func, codes=codes, bs=4)
©2021 fast.ai. All rights reserved.
Site last generated: Mar 31, 2021