6.10. Kafka Connector Tutorial

    Installation

    This tutorial assumes familiarity with Presto and a working local Prestoinstallation (see ). It will focus onsetting up Apache Kafka and integrating it with Presto.

    Download and extract Apache Kafka.

    Note

    This tutorial was tested with Apache Kafka 0.8.1.It should work with any 0.8.x version of Apache Kafka.

    Start ZooKeeper and the Kafka server:

    1. $ bin/kafka-server-start.sh config/server.properties
    2. [2013-04-22 15:01:47,028] INFO Verifying properties (kafka.utils.VerifiableProperties)
    3. [2013-04-22 15:01:47,051] INFO Property socket.send.buffer.bytes is overridden to 1048576 (kafka.utils.VerifiableProperties)
    4. ...

    This will start Zookeeper on port and Kafka on port 9092.

    Step 2: Load data

    Download the tpch-kafka loader from Maven central:

    1. $ curl -o kafka-tpch https://repo1.maven.org/maven2/de/softwareforge/kafka_tpch_0811/1.0/kafka_tpch_0811-1.0.sh
    2. $ chmod 755 kafka-tpch

    Now run the kafka-tpch program to preload a number of topics with tpch data:

    1. $ ./kafka-tpch load --brokers localhost:9092 --prefix tpch. --tpch-type tiny
    2. 2014-07-28T17:17:07.594-0700 INFO main com.facebook.airlift.log.Logging Logging to stderr
    3. 2014-07-28T17:17:07.623-0700 INFO main de.softwareforge.kafka.LoadCommand Processing tables: [customer, orders, lineitem, part, partsupp, supplier, nation, region]
    4. 2014-07-28T17:17:07.981-0700 INFO pool-1-thread-1 de.softwareforge.kafka.LoadCommand Loading table 'customer' into topic 'tpch.customer'...
    5. 2014-07-28T17:17:07.981-0700 INFO pool-1-thread-2 de.softwareforge.kafka.LoadCommand Loading table 'orders' into topic 'tpch.orders'...
    6. 2014-07-28T17:17:07.981-0700 INFO pool-1-thread-3 de.softwareforge.kafka.LoadCommand Loading table 'lineitem' into topic 'tpch.lineitem'...
    7. 2014-07-28T17:17:07.982-0700 INFO pool-1-thread-4 de.softwareforge.kafka.LoadCommand Loading table 'part' into topic 'tpch.part'...
    8. 2014-07-28T17:17:07.982-0700 INFO pool-1-thread-5 de.softwareforge.kafka.LoadCommand Loading table 'partsupp' into topic 'tpch.partsupp'...
    9. 2014-07-28T17:17:07.982-0700 INFO pool-1-thread-6 de.softwareforge.kafka.LoadCommand Loading table 'supplier' into topic 'tpch.supplier'...
    10. 2014-07-28T17:17:07.982-0700 INFO pool-1-thread-7 de.softwareforge.kafka.LoadCommand Loading table 'nation' into topic 'tpch.nation'...
    11. 2014-07-28T17:17:07.982-0700 INFO pool-1-thread-8 de.softwareforge.kafka.LoadCommand Loading table 'region' into topic 'tpch.region'...
    12. 2014-07-28T17:17:10.612-0700 ERROR pool-1-thread-8 kafka.producer.async.DefaultEventHandler Failed to collate messages by topic, partition due to: Failed to fetch topic metadata for topic: tpch.region
    13. 2014-07-28T17:17:10.781-0700 INFO pool-1-thread-8 de.softwareforge.kafka.LoadCommand Generated 5 rows for table 'region'.
    14. 2014-07-28T17:17:10.797-0700 ERROR pool-1-thread-3 kafka.producer.async.DefaultEventHandler Failed to collate messages by topic, partition due to: Failed to fetch topic metadata for topic: tpch.lineitem
    15. 2014-07-28T17:17:10.932-0700 ERROR pool-1-thread-1 kafka.producer.async.DefaultEventHandler Failed to collate messages by topic, partition due to: Failed to fetch topic metadata for topic: tpch.customer
    16. 2014-07-28T17:17:11.068-0700 ERROR pool-1-thread-2 kafka.producer.async.DefaultEventHandler Failed to collate messages by topic, partition due to: Failed to fetch topic metadata for topic: tpch.orders
    17. 2014-07-28T17:17:11.200-0700 ERROR pool-1-thread-6 kafka.producer.async.DefaultEventHandler Failed to collate messages by topic, partition due to: Failed to fetch topic metadata for topic: tpch.supplier
    18. 2014-07-28T17:17:11.319-0700 INFO pool-1-thread-6 de.softwareforge.kafka.LoadCommand Generated 100 rows for table 'supplier'.
    19. 2014-07-28T17:17:11.333-0700 ERROR pool-1-thread-4 kafka.producer.async.DefaultEventHandler Failed to collate messages by topic, partition due to: Failed to fetch topic metadata for topic: tpch.part
    20. 2014-07-28T17:17:11.466-0700 ERROR pool-1-thread-5 kafka.producer.async.DefaultEventHandler Failed to collate messages by topic, partition due to: Failed to fetch topic metadata for topic: tpch.partsupp
    21. 2014-07-28T17:17:11.597-0700 ERROR pool-1-thread-7 kafka.producer.async.DefaultEventHandler Failed to collate messages by topic, partition due to: Failed to fetch topic metadata for topic: tpch.nation
    22. 2014-07-28T17:17:11.706-0700 INFO pool-1-thread-7 de.softwareforge.kafka.LoadCommand Generated 25 rows for table 'nation'.
    23. 2014-07-28T17:17:12.180-0700 INFO pool-1-thread-1 de.softwareforge.kafka.LoadCommand Generated 1500 rows for table 'customer'.
    24. 2014-07-28T17:17:12.251-0700 INFO pool-1-thread-4 de.softwareforge.kafka.LoadCommand Generated 2000 rows for table 'part'.
    25. 2014-07-28T17:17:12.905-0700 INFO pool-1-thread-2 de.softwareforge.kafka.LoadCommand Generated 15000 rows for table 'orders'.
    26. 2014-07-28T17:17:12.919-0700 INFO pool-1-thread-5 de.softwareforge.kafka.LoadCommand Generated 8000 rows for table 'partsupp'.
    27. 2014-07-28T17:17:13.877-0700 INFO pool-1-thread-3 de.softwareforge.kafka.LoadCommand Generated 60175 rows for table 'lineitem'.

    Kafka now has a number of topics that are preloaded with data to query.

    In your Presto installation, add a catalog properties fileetc/catalog/kafka.properties for the Kafka connector.This file lists the Kafka nodes and topics:

    1. connector.name=kafka
    2. kafka.nodes=localhost:9092
    3. kafka.table-names=tpch.customer,tpch.orders,tpch.lineitem,tpch.part,tpch.partsupp,tpch.supplier,tpch.nation,tpch.region
    4. kafka.hide-internal-columns=false

    Now start Presto:

    1. $ bin/launcher start

    Start the Presto CLI:

    1. $ ./presto --catalog kafka --schema tpch

    List the tables to verify that things are working:

    Step 4: Basic data querying

    Kafka data is unstructured and it has no metadata to describe the format ofthe messages. Without further configuration, the Kafka connector can accessthe data and map it in raw form but there are no actual columns besides thebuilt-in ones:

    1. presto:tpch> DESCRIBE customer;
    2. Column | Type | Extra | Comment
    3. -------------------+---------+-------+---------------------------------------------
    4. _partition_id | bigint | | Partition Id
    5. _partition_offset | bigint | | Offset for the message within the partition
    6. _key | varchar | | Key text
    7. _key_corrupt | boolean | | Key data is corrupt
    8. _key_length | bigint | | Total number of key bytes
    9. _message | varchar | | Message text
    10. _message_corrupt | boolean | | Message data is corrupt
    11. _message_length | bigint | | Total number of message bytes
    12. (11 rows)
    13.  
    14. presto:tpch> SELECT count(*) FROM customer;
    15. _col0
    16. -------
    17. 1500
    18.  
    19. presto:tpch> SELECT _message FROM customer LIMIT 5;
    20. _message
    21. --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
    22. {"rowNumber":1,"customerKey":1,"name":"Customer#000000001","address":"IVhzIApeRb ot,c,E","nationKey":15,"phone":"25-989-741-2988","accountBalance":711.56,"marketSegment":"BUILDING","comment":"to the even, regular platelets. regular, ironic epitaphs nag e"}
    23. {"rowNumber":3,"customerKey":3,"name":"Customer#000000003","address":"MG9kdTD2WBHm","nationKey":1,"phone":"11-719-748-3364","accountBalance":7498.12,"marketSegment":"AUTOMOBILE","comment":" deposits eat slyly ironic, even instructions. express foxes detect slyly. blithel
    24. {"rowNumber":5,"customerKey":5,"name":"Customer#000000005","address":"KvpyuHCplrB84WgAiGV6sYpZq7Tj","nationKey":3,"phone":"13-750-942-6364","accountBalance":794.47,"marketSegment":"HOUSEHOLD","comment":"n accounts will have to unwind. foxes cajole accor"}
    25. {"rowNumber":7,"customerKey":7,"name":"Customer#000000007","address":"TcGe5gaZNgVePxU5kRrvXBfkasDTea","nationKey":18,"phone":"28-190-982-9759","accountBalance":9561.95,"marketSegment":"AUTOMOBILE","comment":"ainst the ironic, express theodolites. express, even pinto bean
    26. {"rowNumber":9,"customerKey":9,"name":"Customer#000000009","address":"xKiAFTjUsCuxfeleNqefumTrjS","nationKey":8,"phone":"18-338-906-3675","accountBalance":8324.07,"marketSegment":"FURNITURE","comment":"r theodolites according to the requests wake thinly excuses: pending
    27. (5 rows)
    28.  
    29. presto:tpch> SELECT sum(cast(json_extract_scalar(_message, '$.accountBalance') AS double)) FROM customer LIMIT 10;
    30. _col0
    31. ------------
    32. 6681865.59
    33. (1 row)

    The data from Kafka can be queried using Presto but it is not yet inactual table shape. The raw data is available through the _message and columns but it is not decoded into columns. As the sample data isin JSON format, the JSON Functions and Operators built into Presto can be usedto slice the data.

    The Kafka connector supports topic description files to turn raw data intotable format. These files are located in the etc/kafka folder in thePresto installation and must end with .json. It is recommended thatthe file name matches the table name but this is not necessary.

    Add the following file as etc/kafka/tpch.customer.json and restart Presto:

    1. {
    2. "tableName": "customer",
    3. "schemaName": "tpch",
    4. "topicName": "tpch.customer",
    5. "key": {
    6. "dataFormat": "raw",
    7. "fields": [
    8. {
    9. "name": "kafka_key",
    10. "dataFormat": "LONG",
    11. "type": "BIGINT",
    12. "hidden": "false"
    13. }
    14. ]
    15. }
    16. }

    The customer table now has an additional column: kafka_key.

    1. presto:tpch> DESCRIBE customer;
    2. Column | Type | Extra | Comment
    3. -------------------+---------+-------+---------------------------------------------
    4. kafka_key | bigint | |
    5. _partition_id | bigint | | Partition Id
    6. _partition_offset | bigint | | Offset for the message within the partition
    7. _key | varchar | | Key text
    8. _key_corrupt | boolean | | Key data is corrupt
    9. _key_length | bigint | | Total number of key bytes
    10. _message | varchar | | Message text
    11. _message_corrupt | boolean | | Message data is corrupt
    12. _message_length | bigint | | Total number of message bytes
    13. (12 rows)
    14.  
    15. kafka_key
    16. -----------
    17. 0
    18. 1
    19. 2
    20. 3
    21. 4
    22. 5
    23. 6
    24. 7
    25. 8
    26. 9
    27. (10 rows)

    The topic definition file maps the internal Kafka key (which is a raw longin eight bytes) onto a Presto BIGINT column.

    Step 6: Map all the values from the topic message onto columns

    Update the etc/kafka/tpch.customer.json file to add fields for themessage and restart Presto. As the fields in the message are JSON, it usesthe json data format. This is an example where different data formatsare used for the key and the message.

    1. {
    2. "tableName": "customer",
    3. "schemaName": "tpch",
    4. "topicName": "tpch.customer",
    5. "key": {
    6. "dataFormat": "raw",
    7. "fields": [
    8. {
    9. "name": "kafka_key",
    10. "dataFormat": "LONG",
    11. "type": "BIGINT",
    12. "hidden": "false"
    13. }
    14. ]
    15. },
    16. "message": {
    17. "dataFormat": "json",
    18. "fields": [
    19. {
    20. "name": "row_number",
    21. "mapping": "rowNumber",
    22. "type": "BIGINT"
    23. },
    24. {
    25. "name": "customer_key",
    26. "mapping": "customerKey",
    27. "type": "BIGINT"
    28. },
    29. {
    30. "name": "name",
    31. "mapping": "name",
    32. "type": "VARCHAR"
    33. },
    34. {
    35. "name": "address",
    36. "mapping": "address",
    37. "type": "VARCHAR"
    38. },
    39. {
    40. "name": "nation_key",
    41. "mapping": "nationKey",
    42. "type": "BIGINT"
    43. },
    44. {
    45. "name": "phone",
    46. "mapping": "phone",
    47. "type": "VARCHAR"
    48. },
    49. {
    50. "name": "account_balance",
    51. "mapping": "accountBalance",
    52. "type": "DOUBLE"
    53. },
    54. {
    55. "name": "market_segment",
    56. "mapping": "marketSegment",
    57. "type": "VARCHAR"
    58. },
    59. {
    60. "name": "comment",
    61. "mapping": "comment",
    62. "type": "VARCHAR"
    63. }
    64. ]
    65. }
    66. }

    Now for all the fields in the JSON of the message, columns are defined andthe sum query from earlier can operate on the account_balance column directly:

    1. presto:tpch> DESCRIBE customer;
    2. Column | Type | Extra | Comment
    3. -------------------+---------+-------+---------------------------------------------
    4. kafka_key | bigint | |
    5. row_number | bigint | |
    6. customer_key | bigint | |
    7. name | varchar | |
    8. address | varchar | |
    9. nation_key | bigint | |
    10. phone | varchar | |
    11. account_balance | double | |
    12. market_segment | varchar | |
    13. comment | varchar | |
    14. _partition_id | bigint | | Partition Id
    15. _partition_offset | bigint | | Offset for the message within the partition
    16. _key | varchar | | Key text
    17. _key_corrupt | boolean | | Key data is corrupt
    18. _key_length | bigint | | Total number of key bytes
    19. _message | varchar | | Message text
    20. _message_corrupt | boolean | | Message data is corrupt
    21. _message_length | bigint | | Total number of message bytes
    22. (21 rows)
    23.  
    24. presto:tpch> SELECT * FROM customer LIMIT 5;
    25. kafka_key | row_number | customer_key | name | address | nation_key | phone | account_balance | market_segment | comment
    26. -----------+------------+--------------+--------------------+---------------------------------------+------------+-----------------+-----------------+----------------+---------------------------------------------------------------------------------------------------------
    27. 1 | 2 | 2 | Customer#000000002 | XSTf4,NCwDVaWNe6tEgvwfmRchLXak | 13 | 23-768-687-3665 | 121.65 | AUTOMOBILE | l accounts. blithely ironic theodolites integrate boldly: caref
    28. 3 | 4 | 4 | Customer#000000004 | XxVSJsLAGtn | 4 | 14-128-190-5944 | 2866.83 | MACHINERY | requests. final, regular ideas sleep final accou
    29. 5 | 6 | 6 | Customer#000000006 | sKZz0CsnMD7mp4Xd0YrBvx,LREYKUWAh yVn | 20 | 30-114-968-4951 | 7638.57 | AUTOMOBILE | tions. even deposits boost according to the slyly bold packages. final accounts cajole requests. furious
    30. 7 | 8 | 8 | Customer#000000008 | I0B10bB0AymmC, 0PrRYBCP1yGJ8xcBPmWhl5 | 17 | 27-147-574-9335 | 6819.74 | BUILDING | among the slyly regular theodolites kindle blithely courts. carefully even theodolites haggle slyly alon
    31. 9 | 10 | 10 | Customer#000000010 | 6LrEaV6KR6PLVcgl2ArL Q3rqzLzcT1 v2 | 5 | 15-741-346-9870 | 2753.54 | HOUSEHOLD | es regular deposits haggle. fur
    32. (5 rows)
    33.  
    34. presto:tpch> SELECT sum(account_balance) FROM customer LIMIT 10;
    35. _col0
    36. ------------
    37. 6681865.59
    38. (1 row)

    Now all the fields from the topic messages are available asPresto table columns.

    Setup a live Twitter feed

    • Download the twistr tool
    1. $ curl -o twistr https://repo1.maven.org/maven2/de/softwareforge/twistr_kafka_0811/1.2/twistr_kafka_0811-1.2.sh
    2. $ chmod 755 twistr
    • Create a developer account at and set up anaccess and consumer token.
    • Create a twistr.properties file and put the access and consumer keyand secrets into it:

    Create a tweets table on Presto

    Add the tweets table to the etc/catalog/kafka.properties file:

    1. connector.name=kafka
    2. kafka.nodes=localhost:9092
    3. kafka.table-names=tpch.customer,tpch.orders,tpch.lineitem,tpch.part,tpch.partsupp,tpch.supplier,tpch.nation,tpch.region,tweets

    Add a topic definition file for the Twitter feed as etc/kafka/tweets.json:

    1. {
    2. "tableName": "tweets",
    3. "topicName": "twitter_feed",
    4. "dataFormat": "json",
    5. "key": {
    6. "dataFormat": "raw",
    7. "fields": [
    8. {
    9. "name": "kafka_key",
    10. "dataFormat": "LONG",
    11. "type": "BIGINT",
    12. "hidden": "false"
    13. }
    14. ]
    15. },
    16. "message": {
    17. "dataFormat":"json",
    18. "fields": [
    19. {
    20. "name": "text",
    21. "mapping": "text",
    22. "type": "VARCHAR"
    23. },
    24. {
    25. "name": "user_name",
    26. "mapping": "user/screen_name",
    27. "type": "VARCHAR"
    28. },
    29. {
    30. "name": "lang",
    31. "mapping": "lang",
    32. "type": "VARCHAR"
    33. },
    34. {
    35. "name": "created_at",
    36. "mapping": "created_at",
    37. "type": "TIMESTAMP",
    38. "dataFormat": "rfc2822"
    39. },
    40. {
    41. "name": "favorite_count",
    42. "mapping": "favorite_count",
    43. "type": "BIGINT"
    44. },
    45. {
    46. "name": "retweet_count",
    47. "mapping": "retweet_count",
    48. "type": "BIGINT"
    49. },
    50. {
    51. "name": "favorited",
    52. "mapping": "favorited",
    53. "type": "BOOLEAN"
    54. },
    55. {
    56. "name": "id",
    57. "mapping": "id_str",
    58. "type": "VARCHAR"
    59. },
    60. {
    61. "name": "in_reply_to_screen_name",
    62. "mapping": "in_reply_to_screen_name",
    63. "type": "VARCHAR"
    64. },
    65. {
    66. "name": "place_name",
    67. "mapping": "place/full_name",
    68. "type": "VARCHAR"
    69. }
    70. ]
    71. }
    72. }

    As this table does not have an explicit schema name, it will be placedinto the default schema.

    Feed live data

    Start the twistr tool:

    1. $ java -Dness.config.location=file:$(pwd) -Dness.config=twistr -jar ./twistr

    twistr connects to the Twitter API and feeds the “sample tweet” feedinto a Kafka topic called twitter_feed.

    Now run queries against live data:

    1. $ ./presto-cli --catalog kafka --schema default
    2.  
    3. presto:default> SELECT count(*) FROM tweets;
    4. _col0
    5. -------
    6. 4467
    7. (1 row)
    8.  
    9. presto:default> SELECT count(*) FROM tweets;
    10. _col0
    11. -------
    12. 4517
    13. (1 row)
    14.  
    15. presto:default> SELECT count(*) FROM tweets;
    16. _col0
    17. -------
    18. 4572
    19. (1 row)
    20.  
    21. presto:default> SELECT kafka_key, user_name, lang, created_at FROM tweets LIMIT 10;
    22. kafka_key | user_name | lang | created_at
    23. --------------------+-----------------+------+-------------------------
    24. 494227746231685121 | burncaniff | en | 2014-07-29 14:07:31.000
    25. 494227746214535169 | gu8tn | ja | 2014-07-29 14:07:31.000
    26. 494227746219126785 | pequitamedicen | es | 2014-07-29 14:07:31.000
    27. 494227746201931777 | josnyS | ht | 2014-07-29 14:07:31.000
    28. 494227746219110401 | Cafe510 | en | 2014-07-29 14:07:31.000
    29. 494227746210332673 | Da_JuanAnd_Only | en | 2014-07-29 14:07:31.000
    30. 494227746193956865 | Smile_Kidrauhl6 | pt | 2014-07-29 14:07:31.000
    31. 494227750426017793 | CashforeverCD | en | 2014-07-29 14:07:32.000
    32. 494227750396653569 | FilmArsivimiz | tr | 2014-07-29 14:07:32.000
    33. 494227750388256769 | jmolas | es | 2014-07-29 14:07:32.000
    34. (10 rows)

    There is now a live feed into Kafka which can be queried using Presto.

    Epilogue: Time stamps

    The tweets feed that was set up in the last step contains a time stamp inRFC 2822 format as created_at attribute in each tweet.

    1. presto:default> SELECT DISTINCT json_extract_scalar(_message, '$.created_at')) AS raw_date
    2. -> FROM tweets LIMIT 5;
    3. raw_date
    4. --------------------------------
    5. Tue Jul 29 21:07:31 +0000 2014
    6. Tue Jul 29 21:07:32 +0000 2014
    7. Tue Jul 29 21:07:33 +0000 2014
    8. Tue Jul 29 21:07:34 +0000 2014
    9. Tue Jul 29 21:07:35 +0000 2014
    10. (5 rows)

    The topic definition file for the tweets table contains a mapping onto atimestamp using the rfc2822 converter:

    1. ...
    2. {
    3. "name": "created_at",
    4. "mapping": "created_at",
    5. "type": "TIMESTAMP",
    6. "dataFormat": "rfc2822"
    7. },
    8. ...

    This allows the raw data to be mapped onto a Presto timestamp column:

    The Kafka connector contains converters for ISO 8601, RFC 2822 textformats and for number-based timestamps using seconds or miillisecondssince the epoch. There is also a generic, text-based formatter which usesJoda-Time format strings to parse text columns.