dataclasses
—- 数据类
这个模块提供了一个装饰器和一些函数,用于自动添加生成的 s ,例如 __init__()
和 到用户定义的类。 它最初描述于 PEP 557 。
在这些生成的方法中使用的成员变量是使用 类型标注来定义的。 例如以下代码:
将在添加的内容中包括如下所示的 __init__()
:
def __init__(self, name: str, unit_price: float, quantity_on_hand: int = 0):
self.name = name
self.unit_price = unit_price
self.quantity_on_hand = quantity_on_hand
请注意,此方法会自动添加到类中:它不会在上面显示的 InventoryItem
定义中直接指定。
3.7 新版功能.
@``dataclasses.dataclass
(**, init=True, repr=True, eq=True, order=False, unsafe_hash=False, frozen=False*)
这个函数是 ,用于将生成的 special method 添加到类中,如下所述。
装饰器会检查类以查找 field
。 field
被定义为具有 类型标注 的类变量。 除了下面描述的两个例外,在 中没有什么东西会去检查在变量标注中所指定的类型。
所有生成的方法中的字段顺序是它们在类定义中出现的顺序。
dataclass()
装饰器将向类中添加各种“dunder”方法,如下所述。 如果所添加的方法已存在于类中,则行为将取决于下面所列出的参数。 装饰器会返回调用它的类本身;不会创建新的类。
如果 仅用作没有参数的简单装饰器,它就像它具有此签名中记录的默认值一样。也就是说,这三种 dataclass()
用法是等价的:
@dataclass
class C:
...
@dataclass()
class C:
...
@dataclass(init=True, repr=True, eq=True, order=False, unsafe_hash=False, frozen=False)
class C:
...
的参数有:
init
: 如果为真值(默认),将生成一个__ init__()
方法。如果类已定义
__ init__()
,则忽略此参数。repr
:如果为真值(默认),将生成一个__repr__()
方法。 生成的 repr 字符串将具有类名以及每个字段的名称和 repr ,按照它们在类中定义的顺序。不包括标记为从 repr 中排除的字段。 例如:InventoryItem(name='widget', unit_price=3.0, quantity_on_hand=10)
。如果类已定义 ,则忽略此参数。
eq
:如果为true(默认值),将生成__eq__()
方法。此方法将类作为其字段的元组按顺序比较。比较中的两个实例必须是相同的类型。如果类已定义 ,则忽略此参数。
order
:如果为真值(默认为False
),则__lt__()
、__ le__()
、 和__ge__()
方法将生成。 这将类作为其字段的元组按顺序比较。比较中的两个实例必须是相同的类型。如果order
为真值并且eq
为假值 ,则引发 。unsafe_hash
:如果为False
(默认值),则根据eq
和frozen
的设置方式生成 方法。__hash__()
由内置的 使用,当对象被添加到散列集合(如字典和集合)时。有一个__hash__()
意味着类的实例是不可变的。可变性是一个复杂的属性,取决于程序员的意图, 的存在性和行为,以及dataclass()
装饰器中eq
和frozen
标志的值。默认情况下, 不会隐式添加
__hash__()
方法,除非这样做是安全的。 它也不会添加或更改现有的明确定义的 方法。 设置类属性__hash__ = None
对 Python 具有特定含义,如__hash__()
文档中所述。如果 没有显式定义,或者它被设为
None
,则dataclass()
可能 会添加一个隐式 方法。 虽然并不推荐,但你可以用unsafe_hash=True
来强制dataclass()
创建一个 方法。 如果你的类在逻辑上不可变但却仍然可被修改那么可能就是这种情况。 这是一个特殊用例并且应当被仔细地考虑。以下是隐式创建
__hash__()
方法的规则。请注意,你不能在数据类中都使用显式的 方法并设置unsafe_hash=True
;这将导致TypeError
。如果
eq
和frozen
都是 true,默认情况下 将为你生成一个__hash__()
方法。如果eq
为 true 且frozen
为 false ,则 将被设置为None
,标记它不可用(因为它是可变的)。如果eq
为 false ,则__hash__()
将保持不变,这意味着将使用超类的 方法(如果超类是object
,这意味着它将回到基于id的hash)。frozen
: 如为真值 (默认值为False
),则对字段赋值将会产生异常。 这模拟了只读的冻结实例。 如果在类中定义了 或__delattr__()
则将会引发 。 参见下文的讨论。
field
s 可以选择使用普通的 Python 语法指定默认值:
@dataclass
class C:
a: int # 'a' has no default value
b: int = 0 # assign a default value for 'b'
在这个例子中, a
和 b
都将包含在添加的 __init__()
方法中,它们将被定义为:
def __init__(self, a: int, b: int = 0):
如果具有默认值的字段之后存在没有默认值的字段,将会引发 。 无论此情况是发生在单个类中还是作为类继承的结果,都是如此。
dataclasses.field
(**, default=MISSING, default_factory=MISSING, repr=True, hash=None, init=True, compare=True, metadata=None*)
@dataclass
class C:
mylist: list[int] = field(default_factory=list)
c = C()
c.mylist += [1, 2, 3]
如上所示, MISSING
值是一个 sentinel 对象,用于检测是否提供了 default
和 default_factory
参数。 使用此 sentinel 是因为 None
是 default
的有效值。没有代码应该直接使用 MISSING
值。
field()
参数有:
default
:如果提供,这将是该字段的默认值。这是必需的,因为 调用本身会替换一般的默认值。init
:如果为true(默认值),则该字段作为参数包含在生成的__init__()
方法中。repr
:如果为true(默认值),则该字段包含在生成的 方法返回的字符串中。compare
:如果为true(默认值),则该字段包含在生成的相等性和比较方法中(__eq__()
, 等等)。hash
:这可以是布尔值或None
。如果为true,则此字段包含在生成的__hash__()
方法中。如果为None
(默认值),请使用compare
的值,这通常是预期的行为。如果字段用于比较,则应在 hash 中考虑该字段。不鼓励将此值设置为None
以外的任何值。设置
hash=False
但compare=True
的一个可能原因是,如果一个计算 hash 的代价很高的字段是检验等价性需要的,但还有其他字段可以计算类型的 hash 。 即使从 hash 中排除某个字段,它仍将用于比较。metadata
:这可以是映射或 None 。 None 被视为一个空的字典。这个值包含在MappingProxyType()
中,使其成为只读,并暴露在 对象上。数据类根本不使用它,它是作为第三方扩展机制提供的。多个第三方可以各自拥有自己的键值,以用作元数据中的命名空间。
如果通过调用 field()
指定字段的默认值,则该字段的类属性将替换为指定的 default
值。如果没有提供 default
,那么将删除类属性。目的是在 装饰器运行之后,类属性将包含字段的默认值,就像指定了默认值一样。例如,之后:
@dataclass
class C:
x: int
y: int = field(repr=False)
z: int = field(repr=False, default=10)
t: int = 20
类属性 C.z
将是 10
,类属性 C.t
将是 20
,类属性 C.x
和 C.y
将不设置。
class dataclasses.Field
Field
对象描述每个定义的字段。这些对象在内部创建,并由 模块级方法返回(见下文)。用户永远不应该直接实例化 Field
对象。 其有文档的属性是:
可能存在其他属性,但它们是私有的,不能被审查或依赖。
dataclasses.fields
(class_or_instance)
返回 对象的元组,用于定义此数据类的字段。 接受数据类或数据类的实例。如果没有传递一个数据类或实例将引发 TypeError
。 不返回 ClassVar
或 InitVar
的伪字段。
dataclasses.asdict
(instance, **, dict_factory=dict*)
将数据类 instance
转换为字典(使用工厂函数 dict_factory
)。每个数据类都转换为其字段的字典,如 name: value
对。数据类、字典、列表和元组被递归。例如:
引发 如果 instance
不是数据类实例。
dataclasses.astuple
(instance, **, tuple_factory=tuple*)
将数据类 instance
转换为元组(通过使用工厂函数 tuple_factory
)。每个数据类都转换为其字段值的元组。数据类、字典、列表和元组被递归。
继续前一个例子:
assert astuple(p) == (10, 20)
assert astuple(c) == ([(0, 0), (10, 4)],)
引发 TypeError
如果 instance
不是数据类实例。
dataclasses.make_dataclass
(cls_name, fields, **, bases=(), namespace=None, init=True, repr=True, eq=True, order=False, unsafe_hash=False, frozen=False*)
创建一个名为 cls_name
的新数据类,字段为 fields
中定义的字段,基类为 bases
中给出的基类,并使用 namespace
中给出的命名空间进行初始化。 fields
是一个可迭代的元素,每个元素都是 name
、 (name, type)
或 (name, type, Field)
。 如果只提供``name`` , type
为 typing.Any
。 init
、 repr
、 eq
、 order
、 unsafe_hash
和 frozen
的值与它们在 中的含义相同。
此函数不是严格要求的,因为用于任何创建带有 __annotations__
的新类的 Python 机制都可以应用 dataclass()
函数将该类转换为数据类。提供此功能是为了方便。例如:
C = make_dataclass('C',
[('x', int),
'y',
('z', int, field(default=5))],
namespace={'add_one': lambda self: self.x + 1})
等价于
@dataclass
class C:
x: int
y: 'typing.Any'
z: int = 5
def add_one(self):
return self.x + 1
创建一个与 instance
的类型相同的新对象,用来自 changes
的值替换各个字段。 如果 instance
不是数据类,则会引发 。 如果 changes
中的值没有指定字段,则会引发 TypeError
。
新返回的对象通过调用数据类的 方法创建。这确保了如果存在 __post_init__()
,其也被调用。
如果存在没有默认值的仅初始化变量,必须在调用 replace()
时指定,以便它们可以传递给 和 __post_init__()
。
changes
包含任何定义为 init=False
的字段是错误的。在这种情况下会引发 ValueError
。
提前提醒 init=False
字段在调用 时的工作方式。如果它们完全被初始化的话,它们不是从源对象复制的,而是在 __post_init__()
中初始化。估计 init=False
字段很少能被正确地使用。如果使用它们,那么使用备用类构造函数或者可能是处理实例复制的自定义 replace()
(或类似命名的)方法可能是明智的。
dataclasses.is_dataclass
(class_or_instance)
如果其形参为 dataclass 或其实例则返回 True
,否则返回 False
。
如果你需要知道一个类是否是一个数据类的实例(而不是一个数据类本身),那么再添加一个 not isinstance(obj, type)
检查:
return is_dataclass(obj) and not isinstance(obj, type)
初始化后处理
生成的 代码将调用一个名为 __post_init__()
的方法,如果在类上已经定义了 __post_init__()
。它通常被称为 self.__post_init__()
。但是,如果定义了任何 InitVar
字段,它们也将按照它们在类中定义的顺序传递给 __post_init__()
。 如果没有 __ init__()
方法生成,那么 __post_init__()
将不会被自动调用。
在其他用途中,这允许初始化依赖于一个或多个其他字段的字段值。例如:
@dataclass
class C:
a: float
b: float
c: float = field(init=False)
def __post_init__(self):
self.c = self.a + self.b
由 dataclass()
所生成的 方法不会调用基类的 __init__()
方法。 如果基类有需要被调用的 方法,通常是在 __post_init__()
方法中调用此方法:
@dataclass
class Rectangle:
height: float
@dataclass
class Square(Rectangle):
side: float
def __post_init__(self):
super().__init__(self.side, self.side)
但是请注意,一般来说 dataclass 生成的 __init__()
方法不需要被调用,因为派生的 dataclass 将负责初始化任何自身为 dataclass 的基类的所有字段。
有关将参数传递给 __post_init__()
的方法,请参阅下面有关仅初始化变量的段落。另请参阅关于 处理 init=False
字段的警告。
类变量
两个地方 实际检查字段类型的之一是确定字段是否是如 PEP 526 所定义的类变量。它通过检查字段的类型是否为 typing.ClassVar
来完成此操作。如果一个字段是一个 ClassVar
,它将被排除在考虑范围之外,并被数据类机制忽略。这样的 ClassVar
伪字段不会由模块级的 函数返回。
另一个 dataclass()
检查类型注解地方是为了确定一个字段是否是一个仅初始化变量。它通过查看字段的类型是否为 dataclasses.InitVar
类型来实现。如果一个字段是一个 InitVar
,它被认为是一个称为仅初始化字段的伪字段。因为它不是一个真正的字段,所以它不会被模块级的 函数返回。仅初始化字段作为参数添加到生成的 __init__()
方法中,并传递给可选的 __post_init__()
方法。数据类不会使用它们。
例如,假设一个字段将从数据库初始化,如果在创建类时未提供其值:
在这种情况下, 将返回 i
和 j
的 Field
对象,但不包括 database
。
冻结的实例
无法创建真正不可变的 Python 对象。但是,通过将 frozen=True
传递给 dataclass()
装饰器,你可以模拟不变性。在这种情况下,数据类将向类添加 和 __delattr__()
方法。 些方法在调用时会引发 。
使用 frozen=True
时会有很小的性能损失: __ init__()
不能使用简单的赋值来初始化字段,并必须使用 object.__ setattr__()
。
继承
当数组由 装饰器创建时,它会查看反向 MRO 中的所有类的基类(即从 object
开始 ),并且对于它找到的每个数据类, 将该基类中的字段添加到字段的有序映射中。添加完所有基类字段后,它会将自己的字段添加到有序映射中。所有生成的方法都将使用这种组合的,计算的有序字段映射。由于字段是按插入顺序排列的,因此派生类会重载基类。一个例子:
@dataclass
class Base:
x: Any = 15.0
y: int = 0
@dataclass
class C(Base):
z: int = 10
x: int = 15
最后的字段列表依次是 x
、 y
、 z
。 x
的最终类型是 int
,如类 C
中所指定的那样。
为 C
生成的 方法看起来像:
def __init__(self, x: int = 15, y: int = 0, z: int = 10):
可变的默认值
异常
exception dataclasses.FrozenInstanceError