seaborn.clustermap

    参数:data:2D array-like

    :dict, optional

    If <cite>data</cite> is a tidy dataframe, can provide keyword arguments for pivot to create a rectangular dataframe.

    method:str, optional

    Linkage method to use for calculating clusters. See scipy.cluster.hierarchy.linkage documentation for more information: https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.linkage.html

    metric:str, optional

    Distance metric to use for the data. See scipy.spatial.distance.pdist documentation for more options To use different metrics (or methods) for rows and columns, you may construct each linkage matrix yourself and provide them as {row,col}_linkage.

    z_score:int or None, optional

    standard_scale:int or None, optional

    Either 0 (rows) or 1 (columns). Whether or not to standardize that dimension, meaning for each row or column, subtract the minimum and divide each by its maximum.

    figsize: tuple of two ints, optional

    Size of the figure to create.

    cbar_kws:dict, optional

    Keyword arguments to pass to cbar_kws in heatmap, e.g. to add a label to the colorbar.

    {row,col}_linkage:numpy.array, optional

    Precomputed linkage matrix for the rows or columns. See scipy.cluster.hierarchy.linkage for specific formats.

    :list-like or pandas DataFrame/Series, optional

    List of colors to label for either the rows or columns. Useful to evaluate whether samples within a group are clustered together. Can use nested lists or DataFrame for multiple color levels of labeling. If given as a DataFrame or Series, labels for the colors are extracted from the DataFrames column names or from the name of the Series. DataFrame/Series colors are also matched to the data by their index, ensuring colors are drawn in the correct order.

    mask:boolean array or DataFrame, optional

    If passed, data will not be shown in cells where mask is True. Cells with missing values are automatically masked. Only used for visualizing, not for calculating.

    kwargs:other keyword arguments

    返回值:clustergrid:ClusterGrid

    A ClusterGrid instance.

    Notes

    The returned object has a savefig method that should be used if you want to save the figure object without clipping the dendrograms.

    To access the reordered row indices, use: clustergrid.dendrogram_row.reordered_ind

    Column indices, use: clustergrid.dendrogram_col.reordered_ind

    Examples

    1. >>> import seaborn as sns; sns.set(color_codes=True)
    2. >>> species = iris.pop("species")

    Use a different similarity metric:

    1. >>> g = sns.clustermap(iris, metric="correlation")

    http://seaborn.pydata.org/_images/seaborn-clustermap-2.png

    Use a different clustering method:

    Use a different colormap and ignore outliers in colormap limits:

    1. >>> g = sns.clustermap(iris, cmap="mako", robust=True)

    http://seaborn.pydata.org/_images/seaborn-clustermap-4.png

    Change the size of the figure:

    1. >>> g = sns.clustermap(iris, figsize=(6, 7))

    Plot one of the axes in its original organization:

    http://seaborn.pydata.org/_images/seaborn-clustermap-6.png

    Add colored labels:

    1. >>> row_colors = species.map(lut)
    2. >>> g = sns.clustermap(iris, row_colors=row_colors)

    Standardize the data within the columns:

    1. >>> g = sns.clustermap(iris, standard_scale=1)

    http://seaborn.pydata.org/_images/seaborn-clustermap-8.png

    Normalize the data within the rows: