第十一章 HBASE

    Hbase是一个面向列存储的分布式存储系统,它的优点在于可以实现高性能的并发读写操作,同时Hbase还会对数据进行透明的切分,这样就使得存储本身具有了水平伸缩性。

    HBase建立在HDFS之上,提供高可靠性、高性能、列存储、可伸缩、实时读写的数据库系统。它介于NoSQL和RDBMS之间,仅能通过行键(row key)和行键序列来检索数据,仅支持单行事务(可通过Hive支持来实现多表联合等复杂操作)。主要用来存储非结构化和半结构化的松散数据。与Hadoop一样,HBase目标主要依靠横向扩展,通过不断增加廉价的商用服务器,来增加计算和存储能力。

    HBase表一般有这样的特点:

    • 大:一个表可以有上亿行,上百万列
    • 稀疏:对于为空(null)的列,并不占用存储空间,因此,表可以设计的非常稀疏。

    HBase的服务器体系结构遵循简单的主从服务器架构。它由HRegion Server和HMaster组成,HMaster负责管理所有的HRegion Server,HBase中所有的服务器都通过ZooKeeper来协调。HBase的体系结构如下图所示。

    HBASE的二类数据模型是指从逻辑模型与物理模型来了解Hbase的数据模型,表是HBase表达数据的逻辑组织方式,而基于列的存储则是数据在底层的组织方式.

    在Hbase里面有以下两个主要的概念,Row key,Column Family,我们首先来看看Column family,Column family中文又名“列族”,Column family是在系统启动之前预先定义好的,每一个Column Family都可以根据“限定符”有多个column.下面我们来举个例子就会非常的清晰了。

    假如系统中有一个User表,如果按照传统的RDBMS的话,User表中的列是固定的,比如schema 定义了name,age,sex等属性,User的属性是不能动态增加的。但是如果采用列存储系统,比如Hbase,那么我们可以定义User表,然后定义info 列族,User的数据可以分为:info:name = zhangsan,info:age=30,info:sex=male等,如果后来你又想增加另外的属性,这样很方便只需要info:newProperty就可以了。

    也许前面的这个例子还不够清晰,我们再举个例子来解释一下,熟悉SNS的朋友,应该都知道有好友Feed,一般设计Feed,我们都是按照“某人在某时做了标题为某某的事情”,但是同时一般我们也会预留一下关键字,比如有时候feed也许需要url,feed需要image属性等,这样来说,feed本身的属性是不确定的,因此如果采用传统的关系数据库将非常麻烦,况且关系数据库会造成一些为null的单元浪费,而列存储就不会出现这个问题,在Hbase里,如果每一个column 单元没有值,那么是占用空间的。下面我们通过两张图来形象的表示这种关系:

    第八章 HBASE - 图2

    上图是传统的RDBMS设计的Feed表,我们可以看出feed有多少列是固定的,不能增加,并且为null的列浪费了空间。但是我们再看看下图,下图为Hbase,Cassandra,Bigtable的数据模型图,从下图可以看出,Feed表的列可以动态的增加,并且为空的列是不存储的,这就大大节约了空间,关键是Feed这东西随着系统的运行,各种各样的Feed会出现,我们事先没办法预测有多少种Feed,那么我们也就没有办法确定Feed表有多少列,因此Hbase,Cassandra,Bigtable的基于列存储的数据模型就非常适合此场景。说到这里,采用Hbase的这种方式,还有一个非常重要的好处就是Feed会自动切分,当Feed表中的数据超过某一个阀值以后,Hbase会自动为我们切分数据,这样的话,查询就具有了伸缩性,而再加上Hbase的弱事务性的特性,对Hbase的写入操作也将变得非常快。

    第八章 HBASE - 图5

    虽然在逻辑

    要想使用HBase存取数据必须要有两个步骤:

    1、建立HBase表

    上面创建了一个HBase的test表,用于HBase和数据库做映射使用,同时往这个表里put了两行数据,分别是101和102(row key),info代表列簇,包含了name和sex两列的值

    2、建立HBase外表