6. Dataset transformations 6.1. Pipelines and composite estimators 6.1.2. Transforming target in regression6.1.4. ColumnTransformer for heterogeneous data 6.2.1. Loading features from dicts6.2.3. Text feature extraction 6.3. Preprocessing data 6.3.2. Non-linear transformation6.3.4. Encoding categorical features6.3.7. Generating polynomial features 6.4. Imputation of missing values 6.4.2. Univariate feature imputation6.4.4. References6.4.6. Marking imputed values 6.5.1. PCA: principal component analysis6.5.3. Feature agglomeration 6.6.1. The Johnson-Lindenstrauss lemma 6.7. Kernel Approximation 6.7.2. Radial Basis Function Kernel6.7.4. Skewed Chi Squared Kernel 6.8. Pairwise metrics, Affinities and Kernels 6.8.2. Linear kernel6.8.4. Sigmoid kernel6.8.6. Laplacian kernel 6.9. Transforming the prediction target ()