Scikit-learn 0.22.1 User Guide
首页
白天
夜间
下载
阅读记录
书签管理
我的书签
添加书签
移除书签
编辑文档
4. Inspection
来源 1
浏览
604
扫码
打印
2020-03-01 22:50:41
4. Inspection
上一篇:
下一篇:
发布点评
3. Model selection and evaluation
3.5. Validation curves: plotting scores to evaluate models
3.3. Metrics and scoring: quantifying the quality of predictions
3.4. Model persistence
3.2. Tuning the hyper-parameters of an estimator
3.1. Cross-validation: evaluating estimator performance
7. Dataset loading utilities
6. Dataset transformations
6.5. Unsupervised dimensionality reduction
6.3. Preprocessing data
6.7. Kernel Approximation
6.8. Pairwise metrics, Affinities and Kernels
6.1. Pipelines and composite estimators
6.9. Transforming the prediction target (y)
6.4. Imputation of missing values
6.2. Feature extraction
6.6. Random Projection
5. Visualizations
4. Inspection
4.2. Permutation feature importance
4.1. Partial dependence plots
1. Supervised learning
1.17. Neural network models (supervised)
1.10. Decision Trees
1.2. Linear and Quadratic Discriminant Analysis
1.5. Stochastic Gradient Descent
1.3. Kernel ridge regression
1.15. Isotonic regression
1.9. Naive Bayes
1.11. Ensemble methods
1.7. Gaussian Processes
1.13. Feature selection
1.14. Semi-Supervised
1.4. Support Vector Machines
1.16. Probability calibration
1.6. Nearest Neighbors
1.12. Multiclass and multilabel algorithms
1.1. Linear Models
1.8. Cross decomposition
2. Unsupervised learning
2.3. Clustering
2.9. Neural network models (unsupervised)
2.5. Decomposing signals in components (matrix factorization problems)
2.4. Biclustering
2.7. Novelty and Outlier Detection
2.2. Manifold learning
2.8. Density Estimation
2.6. Covariance estimation
2.1. Gaussian mixture models
8. Computing with scikit-learn
暂无相关搜索结果!
本文档使用
全库网
构建
×
思维导图备注
×
文章二维码
手机扫一扫,轻松掌上读
×
文档下载
请下载您需要的格式的文档,随时随地,享受汲取知识的乐趣!
PDF
文档
EPUB
文档
MOBI
文档
×
书签列表
×
阅读记录
阅读进度:
0.00%
(
0/0
)
重置阅读进度