1. Supervised learning 1.1. Linear Models 1.1.2. Ridge regression and classification1.1.4. Multi-task Lasso1.1.6. Multi-task Elastic-Net1.1.8. LARS Lasso1.1.10. Bayesian Regression1.1.12. Stochastic Gradient Descent - SGD1.1.14. Passive Aggressive Algorithms1.1.16. Polynomial regression: extending linear models with basis functions 1.2.1. Dimensionality reduction using Linear Discriminant Analysis1.2.3. Mathematical formulation of LDA dimensionality reduction1.2.5. Estimation algorithms 1.4. Support Vector Machines 1.4.2. Regression1.4.4. Complexity1.4.6. Kernel functions1.4.8. Implementation details 1.5.1. Classification1.5.4. Complexity1.5.6. Tips on Practical Use1.5.8. Implementation details 1.6.1. Unsupervised Nearest Neighbors1.6.3. Nearest Neighbors Regression1.6.5. Nearest Centroid Classifier1.6.7. Neighborhood Components Analysis 1.7.1. Gaussian Process Regression (GPR)1.7.3. Gaussian Process Classification (GPC)1.7.5. Kernels for Gaussian Processes 1.9. Naive Bayes 1.9.2. Multinomial Naive Bayes1.9.4. Bernoulli Naive Bayes1.9.6. Out-of-core naive Bayes model fitting 1.10.1. Classification1.10.3. Multi-output problems1.10.5. Tips on practical use1.10.7. Mathematical formulation 1.12. Multiclass and multilabel algorithms 1.12.2. One-Vs-The-Rest1.12.4. Error-Correcting Output-Codes1.12.6. Multioutput classification1.12.8. Regressor Chain 1.13.1. Removing features with low variance1.13.3. Recursive feature elimination1.13.5. Feature selection as part of a pipeline 1.14.1. Label Propagation 1.16. Probability calibration 1.17.1. Multi-layer Perceptron1.17.3. Regression1.17.5. Algorithms1.17.7. Mathematical formulation