这里有很多步骤。首先,我们看到。 pyplot
像往常一样导入,然后导入了numpy
,然后是用于访问互联网的urllib
,然后导入了matplotlib.dates
作为mdates
,它对于将日期戳转换为 matplotlib 可以理解的日期很有用。
然后,我们定义一个空列表,这是我们将要放置股票数据的地方,我们也开始使用split_source
变量拆分数据,以换行符拆分。
现在,我们已经解析了数据,并做好了准备。我们将使用 NumPy:
date, closep, highp, lowp, openp, volume = np.loadtxt(stock_data,
delimiter=',',
unpack=True,
# %y = partial year 15
# %m = number month
# %d = number day
# %S = seconds
# 12-06-2014
converters={0: bytespdate2num('%Y%m%d')})