早在2015年,谷歌大脑团队就成立了第一个TPU中心,为 Google Translation,Photos 和 Gmail等产品提供支持。 为了使所有数据科学家和开发人员能够访问此技术,不久之后就发布了易于使用,可扩展且功能强大的基于云的TPU,以便在 Google Cloud 上运行 TensorFlow 模型。
TPU 由多个计算核心(Tensor Core)组成,其中包括标量,矢量和矩阵单元(MXU)。TPU(张量处理单元)与CPU(中央处理单元)和GPU(图形处理单元)最重要的区别是:TPU的硬件专为线性代数而设计,线性代数是深度学习的基石。在过去几年中,Google TPU 已经发布了 v1,v2,v3, v2 Pod, v3 Pod, Edge 等多个版本:
通过使用 Cloud TPU ,我们可以大大提升 TensorFlow 进行机器学习训练和预测的性能,并能够灵活的帮助研究人员,开发人员和企业 TensorFlow 计算群集。
Source: Google
根据研究显示,TPU 比现代 GPU 和 CPU 快 15 到 30 倍。同时,TPU 还实现了比传统芯片更好的能耗效率,算力能耗比值提高了30倍至80倍。