LRU算法详解

    计算机的缓存容量有限,如果缓存满了就要删除一些内容,给新内容腾位置。但问题是,删除哪些内容呢?我们肯定希望删掉哪些没什么用的缓存,而把有用的数据继续留在缓存里,方便之后继续使用。那么,什么样的数据,我们判定为「有用的」的数据呢?

    LRU 缓存淘汰算法就是一种常用策略。LRU 的全称是 Least Recently Used,也就是说我们认为最近使用过的数据应该是是「有用的」,很久都没用过的数据应该是无用的,内存满了就优先删那些很久没用过的数据。

    举个简单的例子,安卓手机都可以把软件放到后台运行,比如我先后打开了「设置」「手机管家」「日历」,那么现在他们在后台排列的顺序是这样的:

    但是这时候如果我访问了一下「设置」界面,那么「设置」就会被提前到第一个,变成这样:

    jietu

    假设我的手机只允许我同时开 3 个应用程序,现在已经满了。那么如果我新开了一个应用「时钟」,就必须关闭一个应用为「时钟」腾出一个位置,关那个呢?

    按照 LRU 的策略,就关最底下的「手机管家」,因为那是最久未使用的,然后把新开的应用放到最上面:

    现在你应该理解 LRU(Least Recently Used)策略了。当然还有其他缓存淘汰策略,比如不要按访问的时序来淘汰,而是按访问频率(LFU 策略)来淘汰等等,各有应用场景。本文讲解 LRU 算法策略。

    LRU 算法实际上是让你设计数据结构:首先要接收一个 capacity 参数作为缓存的最大容量,然后实现两个 API,一个是 put(key, val) 方法存入键值对,另一个是 get(key) 方法获取 key 对应的 val,如果 key 不存在则返回 -1。

    分析上面的操作过程,要让 put 和 get 方法的时间复杂度为 O(1),我们可以总结出 cache 这个数据结构必要的条件:查找快,插入快,删除快,有顺序之分。

    因为显然 cache 必须有顺序之分,以区分最近使用的和久未使用的数据;而且我们要在 cache 中查找键是否已存在;如果容量满了要删除最后一个数据;每次访问还要把数据插入到队头。

    那么,什么数据结构同时符合上述条件呢?哈希表查找快,但是数据无固定顺序;链表有顺序之分,插入删除快,但是查找慢。所以结合一下,形成一种新的数据结构:哈希链表。

    LRU 缓存算法的核心数据结构就是哈希链表,双向链表和哈希表的结合体。这个数据结构长这样:

    HashLinkedList

    思想很简单,就是借助哈希表赋予了链表快速查找的特性嘛:可以快速查找某个 key 是否存在缓存(链表)中,同时可以快速删除、添加节点。回想刚才的例子,这种数据结构是不是完美解决了 LRU 缓存的需求?

    也许读者会问,为什么要是双向链表,单链表行不行?另外,既然哈希表中已经存了 key,为什么链表中还要存键值对呢,只存值不就行了?

    想的时候都是问题,只有做的时候才有答案。这样设计的原因,必须等我们亲自实现 LRU 算法之后才能理解,所以我们开始看代码吧~

    很多编程语言都有内置的哈希链表或者类似 LRU 功能的库函数,但是为了帮大家理解算法的细节,我们用 Java 自己造轮子实现一遍 LRU 算法。

    首先,我们把双链表的节点类写出来,为了简化,key 和 val 都认为是 int 类型:

    1. public int key, val;
    2. public Node next, prev;
    3. public Node(int k, int v) {
    4. this.key = k;
    5. this.val = v;
    6. }
    7. }

    然后依靠我们的 Node 类型构建一个双链表,实现几个需要的 API(这些操作的时间复杂度均为 $O(1)$):

    到这里就能回答刚才“为什么必须要用双向链表”的问题了,因为我们需要删除操作。删除一个节点不光要得到该节点本身的指针,也需要操作其前驱节点的指针,而双向链表才能支持直接查找前驱,保证操作的时间复杂度 $O(1)$。

    有了双向链表的实现,我们只需要在 LRU 算法中把它和哈希表结合起来即可。我们先把逻辑理清楚:

    1. // key 映射到 Node(key, val)
    2. HashMap<Integer, Node> map;
    3. DoubleList cache;
    4. if (key 不存在) {
    5. return -1;
    6. } else {
    7. 将数据 (key, val) 提到开头;
    8. return val;
    9. }
    10. }
    11. void put(int key, int val) {
    12. Node x = new Node(key, val);
    13. if (key 已存在) {
    14. } else {
    15. if (cache 已满) {
    16. 删除链表的最后一个数据腾位置;
    17. 删除 map 中映射到该数据的键;
    18. }
    19. 将新节点 x 插入到开头;
    20. map 中新建 key 对新节点 x 的映射;
    21. }
    22. }

    如果能够看懂上述逻辑,翻译成代码就很容易理解了:

    这里就能回答之前的问答题“为什么要在链表中同时存储 key 和 val,而不是只存储 val”,注意这段代码:

    1. if (cap == cache.size()) {
    2. // 删除链表最后一个数据
    3. Node last = cache.removeLast();

    当缓存容量已满,我们不仅仅要删除最后一个 Node 节点,还要把 map 中映射到该节点的 key 同时删除,而这个 key 只能由 Node 得到。如果 Node 结构中只存储 val,那么我们就无法得知 key 是什么,就无法删除 map 中的键,造成错误。

    至此,你应该已经掌握 LRU 算法的思想和实现了,很容易犯错的一点是:处理链表节点的同时不要忘了更新哈希表中对节点的映射。

    致力于把算法讲清楚!欢迎关注我的微信公众号 labuladong,查看更多通俗易懂的文章

    上一篇:二叉堆详解实现优先级队列

    目录