说明:

    如今近视已经成为困扰人们健康的一项全球性负担,在近视人群中,有超过35%的人患有重度近视。近似将会导致眼睛的光轴被拉长,有可能引起视网膜或者络网膜的病变。随着近似度数的不断加深,高度近似有可能引发病理性病变,这将会导致以下几种症状:视网膜或者络网膜发生退化、视盘区域萎缩、漆裂样纹损害、Fuchs斑等。因此,及早发现近似患者眼睛的病变并采取治疗,显得非常重要。

    数据可以从AIStudio


    /home/aistudio/data/data19065 目录包括如下三个文件,解压缩后存放在/home/aistudio/work/palm目录下。

    • training.zip:包含训练中的图片和标签
    • validation.zip:包含验证集的图片
    • valid_gt.zip:包含验证集的标签

    注意


    1. /home/aistudio/work/palm/PALM-Training400

    iChallenge-PM中既有病理性近视患者的眼底图片,也有非病理性近视患者的图片,命名规则如下:

    • 病理性近视(PM):文件名以P开头

    • 非病理性近视(non-PM):

      • 高度近似(high myopia):文件名以H开头

      • 正常眼睛(normal):文件名以N开头

    1. import numpy as np
    2. import matplotlib.pyplot as plt
    3. %matplotlib inline
    4. from PIL import Image
    5. DATADIR = '/home/aistudio/work/palm/PALM-Training400/PALM-Training400'
    6. # 文件名以N开头的是正常眼底图片,以P开头的是病变眼底图片
    7. file1 = 'N0012.jpg'
    8. file2 = 'P0095.jpg'
    9. # 读取图片
    10. img1 = Image.open(os.path.join(DATADIR, file1))
    11. img1 = np.array(img1)
    12. img2 = Image.open(os.path.join(DATADIR, file2))
    13. img2 = np.array(img2)
    14. # 画出读取的图片
    15. plt.figure(figsize=(16, 8))
    16. f = plt.subplot(121)
    17. f.set_title('Normal', fontsize=20)
    18. plt.imshow(img1)
    19. f = plt.subplot(122)
    20. f.set_title('PM', fontsize=20)
    21. plt.imshow(img2)
    22. plt.show()

    1. <Figure size 1152x576 with 2 Axes>
    1. # 查看图片形状
    2. img1.shape, img2.shape

    使用OpenCV从磁盘读入图片,将每张图缩放到

    LeNet在眼疾识别数据集iChallenge-PM上的应用 - 图2 大小,并且将像素值调整到 之间,代码如下所示:

    1. import cv2
    2. import random
    3. import numpy as np
    4. # 对读入的图像数据进行预处理
    5. def transform_img(img):
    6. # 将图片尺寸缩放道 224x224
    7. img = cv2.resize(img, (224, 224))
    8. # 读入的图像数据格式是[H, W, C]
    9. # 使用转置操作将其变成[C, H, W]
    10. img = np.transpose(img, (2,0,1))
    11. img = img.astype('float32')
    12. # 将数据范围调整到[-1.0, 1.0]之间
    13. img = img / 255.
    14. img = img * 2.0 - 1.0
    15. return img
    16. # 定义训练集数据读取器
    17. def data_loader(datadir, batch_size=10, mode = 'train'):
    18. # 将datadir目录下的文件列出来,每条文件都要读入
    19. filenames = os.listdir(datadir)
    20. def reader():
    21. if mode == 'train':
    22. # 训练时随机打乱数据顺序
    23. random.shuffle(filenames)
    24. batch_imgs = []
    25. batch_labels = []
    26. for name in filenames:
    27. filepath = os.path.join(datadir, name)
    28. img = cv2.imread(filepath)
    29. img = transform_img(img)
    30. if name[0] == 'H' or name[0] == 'N':
    31. # H开头的文件名表示高度近似,N开头的文件名表示正常视力
    32. # 高度近视和正常视力的样本,都不是病理性的,属于负样本,标签为0
    33. label = 0
    34. elif name[0] == 'P':
    35. # P开头的是病理性近视,属于正样本,标签为1
    36. label = 1
    37. else:
    38. raise('Not excepted file name')
    39. # 每读取一个样本的数据,就将其放入数据列表中
    40. batch_imgs.append(img)
    41. batch_labels.append(label)
    42. if len(batch_imgs) == batch_size:
    43. # 当数据列表的长度等于batch_size的时候,
    44. # 把这些数据当作一个mini-batch,并作为数据生成器的一个输出
    45. imgs_array = np.array(batch_imgs).astype('float32')
    46. labels_array = np.array(batch_labels).astype('float32').reshape(-1, 1)
    47. yield imgs_array, labels_array
    48. batch_imgs = []
    49. batch_labels = []
    50. if len(batch_imgs) > 0:
    51. # 剩余样本数目不足一个batch_size的数据,一起打包成一个mini-batch
    52. imgs_array = np.array(batch_imgs).astype('float32')
    53. yield imgs_array, labels_array
    54. return reader
    55. # 定义验证集数据读取器
    56. def valid_data_loader(datadir, csvfile, batch_size=10, mode='valid'):
    57. # 训练集读取时通过文件名来确定样本标签,验证集则通过csvfile来读取每个图片对应的标签
    58. # 请查看解压后的验证集标签数据,观察csvfile文件里面所包含的内容
    59. # 其中第一列是图片id,第二列是文件名,第三列是图片标签,
    60. # 第四列和第五列是Fovea的坐标,与分类任务无关
    61. # ID,imgName,Label,Fovea_X,Fovea_Y
    62. # 1,V0001.jpg,0,1157.74,1019.87
    63. # 2,V0002.jpg,1,1285.82,1080.47
    64. # 打开包含验证集标签的csvfile,并读入其中的内容
    65. filelists = open(csvfile).readlines()
    66. def reader():
    67. batch_imgs = []
    68. batch_labels = []
    69. for line in filelists[1:]:
    70. line = line.strip().split(',')
    71. name = line[1]
    72. label = int(line[2])
    73. # 根据图片文件名加载图片,并对图像数据作预处理
    74. filepath = os.path.join(datadir, name)
    75. img = cv2.imread(filepath)
    76. img = transform_img(img)
    77. # 每读取一个样本的数据,就将其放入数据列表中
    78. batch_imgs.append(img)
    79. batch_labels.append(label)
    80. if len(batch_imgs) == batch_size:
    81. # 当数据列表的长度等于batch_size的时候,
    82. # 把这些数据当作一个mini-batch,并作为数据生成器的一个输出
    83. imgs_array = np.array(batch_imgs).astype('float32')
    84. labels_array = np.array(batch_labels).astype('float32').reshape(-1, 1)
    85. yield imgs_array, labels_array
    86. batch_imgs = []
    87. batch_labels = []
    88. if len(batch_imgs) > 0:
    89. # 剩余样本数目不足一个batch_size的数据,一起打包成一个mini-batch
    90. imgs_array = np.array(batch_imgs).astype('float32')
    91. labels_array = np.array(batch_labels).astype('float32').reshape(-1, 1)
    92. yield imgs_array, labels_array
    93. return reader
    1. # 查看数据形状
    2. DATADIR = '/home/aistudio/work/palm/PALM-Training400/PALM-Training400'
    3. train_loader = data_loader(DATADIR,
    4. batch_size=10, mode='train')
    5. data_reader = train_loader()
    6. data = next(data_reader)
    7. data[0].shape, data[1].shape

    启动训练

    1. # -*- coding: utf-8 -*-
    2. # LeNet 识别眼疾图片
    3. import os
    4. import random
    5. import paddle
    6. import paddle.fluid as fluid
    7. import numpy as np
    8. DATADIR = '/home/aistudio/work/palm/PALM-Training400/PALM-Training400'
    9. DATADIR2 = '/home/aistudio/work/palm/PALM-Validation400'
    10. CSVFILE = '/home/aistudio/work/palm/PALM-Validation-GT/labels.csv'
    11. # 定义训练过程
    12. def train(model):
    13. with fluid.dygraph.guard():
    14. print('start training ... ')
    15. model.train()
    16. epoch_num = 5
    17. # 定义优化器
    18. opt = fluid.optimizer.Momentum(learning_rate=0.001, momentum=0.9, parameter_list=model.parameters())
    19. # 定义数据读取器,训练数据读取器和验证数据读取器
    20. train_loader = data_loader(DATADIR, batch_size=10, mode='train')
    21. valid_loader = valid_data_loader(DATADIR2, CSVFILE)
    22. for epoch in range(epoch_num):
    23. for batch_id, data in enumerate(train_loader()):
    24. x_data, y_data = data
    25. img = fluid.dygraph.to_variable(x_data)
    26. label = fluid.dygraph.to_variable(y_data)
    27. # 运行模型前向计算,得到预测值
    28. logits = model(img)
    29. # 进行loss计算
    30. loss = fluid.layers.sigmoid_cross_entropy_with_logits(logits, label)
    31. avg_loss = fluid.layers.mean(loss)
    32. if batch_id % 10 == 0:
    33. print("epoch: {}, batch_id: {}, loss is: {}".format(epoch, batch_id, avg_loss.numpy()))
    34. # 反向传播,更新权重,清除梯度
    35. avg_loss.backward()
    36. opt.minimize(avg_loss)
    37. model.clear_gradients()
    38. accuracies = []
    39. losses = []
    40. for batch_id, data in enumerate(valid_loader()):
    41. img = fluid.dygraph.to_variable(x_data)
    42. label = fluid.dygraph.to_variable(y_data)
    43. # 运行模型前向计算,得到预测值
    44. logits = model(img)
    45. # 二分类,sigmoid计算后的结果以0.5为阈值分两个类别
    46. # 计算sigmoid后的预测概率,进行loss计算
    47. pred = fluid.layers.sigmoid(logits)
    48. loss = fluid.layers.sigmoid_cross_entropy_with_logits(logits, label)
    49. # 计算预测概率小于0.5的类别
    50. pred2 = pred * (-1.0) + 1.0
    51. # 得到两个类别的预测概率,并沿第一个维度级联
    52. pred = fluid.layers.concat([pred2, pred], axis=1)
    53. acc = fluid.layers.accuracy(pred, fluid.layers.cast(label, dtype='int64'))
    54. accuracies.append(acc.numpy())
    55. losses.append(loss.numpy())
    56. print("[validation] accuracy/loss: {}/{}".format(np.mean(accuracies), np.mean(losses)))
    57. model.train()
    58. # save params of model
    59. fluid.save_dygraph(model.state_dict(), 'mnist')
    60. # save optimizer state
    61. fluid.save_dygraph(opt.state_dict(), 'mnist')
    62. # 定义评估过程
    63. def evaluation(model, params_file_path):
    64. with fluid.dygraph.guard():
    65. print('start evaluation .......')
    66. #加载模型参数
    67. model_state_dict, _ = fluid.load_dygraph(params_file_path)
    68. model.load_dict(model_state_dict)
    69. model.eval()
    70. eval_loader = load_data('eval')
    71. acc_set = []
    72. avg_loss_set = []
    73. for batch_id, data in enumerate(eval_loader()):
    74. x_data, y_data = data
    75. img = fluid.dygraph.to_variable(x_data)
    76. label = fluid.dygraph.to_variable(y_data)
    77. # 计算预测和精度
    78. prediction, acc = model(img, label)
    79. # 计算损失函数值
    80. loss = fluid.layers.cross_entropy(input=prediction, label=label)
    81. avg_loss = fluid.layers.mean(loss)
    82. acc_set.append(float(acc.numpy()))
    83. avg_loss_set.append(float(avg_loss.numpy()))
    84. # 求平均精度
    85. acc_val_mean = np.array(acc_set).mean()
    86. avg_loss_val_mean = np.array(avg_loss_set).mean()
    87. print('loss={}, acc={}'.format(avg_loss_val_mean, acc_val_mean))
    88. # 导入需要的包
    89. import paddle
    90. import paddle.fluid as fluid
    91. import numpy as np
    92. from paddle.fluid.dygraph.nn import Conv2D, Pool2D, Linear
    93. # 定义 LeNet 网络结构
    94. class LeNet(fluid.dygraph.Layer):
    95. def __init__(self, name_scope, num_classes=1):
    96. super(LeNet, self).__init__(name_scope)
    97. # 创建卷积和池化层块,每个卷积层使用Sigmoid激活函数,后面跟着一个2x2的池化
    98. self.conv1 = Conv2D(num_channels=3, num_filters=6, filter_size=5, act='sigmoid')
    99. self.pool1 = Pool2D(pool_size=2, pool_stride=2, pool_type='max')
    100. self.conv2 = Conv2D(num_channels=6, num_filters=16, filter_size=5, act='sigmoid')
    101. self.pool2 = Pool2D(pool_size=2, pool_stride=2, pool_type='max')
    102. # 创建第3个卷积层
    103. self.conv3 = Conv2D(num_channels=16, num_filters=120, filter_size=4, act='sigmoid')
    104. # 创建全连接层,第一个全连接层的输出神经元个数为64, 第二个全连接层输出神经元个数为分裂标签的类别数
    105. self.fc1 = Linear(input_dim=300000, output_dim=64, act='sigmoid')
    106. self.fc2 = Linear(input_dim=64, output_dim=num_classes)
    107. # 网络的前向计算过程
    108. def forward(self, x):
    109. x = self.conv1(x)
    110. x = self.pool1(x)
    111. x = self.conv2(x)
    112. x = self.pool2(x)
    113. x = self.conv3(x)
    114. x = fluid.layers.reshape(x, [x.shape[0], -1])
    115. x = self.fc1(x)
    116. x = self.fc2(x)
    117. return x
    118. if __name__ == '__main__':
    119. # 创建模型
    120. with fluid.dygraph.guard():
    121. model = LeNet("LeNet_", num_classes=1)

    通过运行结果可以看出,在眼疾筛查数据集iChallenge-PM上,LeNet的loss很难下降,模型没有收敛。这是因为MNIST数据集的图片尺寸比较小(