QDataStream提供了基于QIODevice的二进制数据的序列化。数据流是一种二进制流,这种流完全不依赖于底层操作系统、CPU 或者字节顺序(大端或小端)。例如,在安装了 Windows 平台的 PC 上面写入的一个数据流,可以不经过任何处理,直接拿到运行了 Solaris 的 SPARC 机器上读取。由于数据流就是二进制流,因此我们也可以直接读写没有编码的二进制数据,例如图像、视频、音频等。

    QDataStream既能够存取 C++ 基本类型,如 int、char、short 等,也可以存取复杂的数据类型,例如自定义的类。实际上,QDataStream对于类的存储,是将复杂的类分割为很多基本单元实现的。

    结合,QDataStream可以很方便地对文件、网络套接字等进行读写操作。我们从代码开始看起:

    在这段代码中,我们首先打开一个名为 file.dat 的文件(注意,我们为简单起见,并没有检查文件打开是否成功,这在正式程序中是不允许的)。然后,我们将刚刚创建的file对象的指针传递给一个QDataStream实例out。类似于std::cout标准输出流,QDataStream也重载了输出重定向<<运算符。后面的代码就很简单了:将“the answer is”和数字 42 输出到数据流(如果你不明白这句话的意思,这可是宇宙终极问题的答案 ;-P 请自行搜索《银河系漫游指南》)。由于我们的 out 对象建立在file之上,因此相当于将宇宙终极问题的答案写入file

    需要指出一点:最好使用 Qt 整型来进行读写,比如程序中的qint32。这保证了在任意平台和任意编译器都能够有相同的行为。

    我们通过一个例子来看看 Qt 是如何存储数据的。例如char *字符串,在存储时,会首先存储该字符串包括 \0 结束符的长度(32位整型),然后是字符串的内容以及结束符 \0。在读取时,先以 32 位整型读出整个的长度,然后按照这个长度取出整个字符串的内容。

      重新运行一下程序,你就得到宇宙终极问题的答案了。

      我们已经获得宇宙终极问题的答案了,下面,我们要将这个答案读取出来:

      1. QFile file("file.dat");
      2. file.open(QIODevice::ReadOnly);
      3. QDataStream in(&file);
      4. QString str;
      5. qint32 a;
      6. in >> str >> a;

      这段代码没什么好说的。唯一需要注意的是,你必须按照写入的顺序,将数据读取出来。也就是说,程序数据写入的顺序必须预先定义好。在这个例子中,我们首先写入字符串,然后写入数字,那么就首先读出来的就是字符串,然后才是数字。顺序颠倒的话,程序行为是不确定的,严重时会直接造成程序崩溃。

      由于二进制流是纯粹的字节数据,带来的问题是,如果程序不同版本之间按照不同的方式读取(前面说过,Qt 保证读写内容的一致,但是并不能保证不同 Qt 版本之间的一致),数据就会出现错误。因此,我们必须提供一种机制来确保不同版本之间的一致性。通常,我们会使用如下的代码写入:

      这里,我们增加了两行代码:

      1. out << (quint32)0xA0B0C0D0;

      用于写入魔术数字。所谓魔术数字,是二进制输出中经常使用的一种技术。二进制格式是人不可读的,并且通常具有相同的后缀名(比如 dat 之类),因此我们没有办法区分两个二进制文件哪个是合法的。所以,我们定义的二进制格式通常具有一个魔术数字,用于标识文件的合法性。在本例中,我们在文件最开始写入 0xA0B0C0D0,在读取的时候首先检查这个数字是不是 0xA0B0C0D0。如果不是的话,说明这个文件不是可识别格式,因此根本不需要去继续读取。一般二进制文件都会有这么一个魔术数字,例如 Java 的 class 文件的魔术数字就是 0xCAFEBABE,使用二进制查看器就可以查看。魔术数字是一个 32 位的无符号整型,因此我们使用来得到一个平台无关的 32 位无符号整型。

      1. out << (qint32)123;

      是标识文件的版本。我们用魔术数字标识文件的类型,从而判断文件是不是合法的。但是,文件的不同版本之间也可能存在差异:我们可能在第一版保存整型,第二版可能保存字符串。为了标识不同的版本,我们只能将版本写入文件。比如,现在我们的版本是 123。

      下面一行还是有关版本的:

      上面一句是文件的版本号,但是,Qt 不同版本之间的读取方式可能也不一样。这样,我们就得指定 Qt 按照哪个版本去读。这里,我们指定以 Qt 4.0 格式去读取内容。

      当我们这样写入文件之后,我们在读取的时候就需要增加一系列的判断:

      1. QFile file("file.dat");
      2. file.open(QIODevice::ReadOnly);
      3. QDataStream in(&file);
      4.  
      5. // 检查魔术数字
      6. quint32 magic;
      7. in >> magic;
      8. if (magic != 0xA0B0C0D0) {
      9. }
      10.  
      11. // 检查版本
      12. qint32 version;
      13. in >> version;
      14. if (version < 100) {
      15. return BAD_FILE_TOO_OLD;
      16. }
      17. if (version > 123) {
      18. return BAD_FILE_TOO_NEW;
      19. }
      20.  
      21. if (version <= 110) {
      22. in.setVersion(QDataStream::Qt_3_2);
      23. } else {
      24. in.setVersion(QDataStream::Qt_4_0);
      25. // 读取数据
      26. in >> lots_of_interesting_data;
      27. if (version >= 120) {
      28. in >> data_new_in_version_1_2;
      29. }
      30. in >> other_interesting_data;

      这段代码就是按照前面的解释进行的。首先读取魔术数字,检查文件是否合法。如果合法,读取文件版本:小于 100 或者大于 123 都是不支持的。如果在支持的版本范围内(100 <= version <= 123),则当是小于等于 110 的时候,按照Qt_3_2的格式读取,否则按照Qt_4_0的格式读取。当设置完这些参数之后,开始读取数据。

      至此,我们介绍了有关QDataStream的相关内容。那么,既然QIODevice提供了read()readLine()之类的函数,为什么还要有QDataStream呢?QDataStreamQIODevice有什么区别?区别在于,QDataStream提供流的形式,性能上一般比直接调用原始 API 更好一些。我们通过下面一段代码看看什么是流的形式:

      1. QFile file("file.dat");
      2. file.open(QIODevice::ReadWrite);
      3.  
      4. QDataStream stream(&file);
      5. QString str = "the answer is 42";
      6. QString strout;
      7.  
      8. stream << str;
      9. file.flush();
      10. stream >> strout;