Shading language

    If you are already familiar with GLSL, the is a resource that will help you transition from regular GLSL to Godot’s shading language.

    Data types

    Most GLSL ES 3.0 datatypes are supported:

    Just like GLSL ES 3.0, implicit casting between scalars and vectors of the same size but different type is not allowed. Casting of types of different size is also not allowed. Conversion must be done explicitly via constructors.

    Example:

    Default integer constants are signed, so casting is always needed to convert to unsigned:

    1. uint a = 2; // invalid
    2. uint a = uint(2); // valid

    Members

    Individual scalar members of vector types are accessed via the “x”, “y”, “z” and “w” members. Alternatively, using “r”, “g”, “b” and “a” also works and is equivalent. Use whatever fits best for your needs.

    For matrices, use the m[row][column] indexing syntax to access each scalar, or m[idx] to access a vector by row index. For example, for accessing the y position of an object in a mat4 you use m[3][1].

    Construction of vector types must always pass:

    1. // The required amount of scalars
    2. vec4 a = vec4(0.0, 1.0, 2.0, 3.0);
    3. // Complementary vectors and/or scalars
    4. vec4 a = vec4(vec2(0.0, 1.0), vec2(2.0, 3.0));
    5. vec4 a = vec4(vec3(0.0, 1.0, 2.0), 3.0);
    6. // A single scalar for the whole vector
    7. vec4 a = vec4(0.0);

    Construction of matrix types requires vectors of the same dimension as the matrix. You can also build a diagonal matrix using matx(float) syntax. Accordingly, mat4(1.0) is an identity matrix.

    1. mat2 m2 = mat2(vec2(1.0, 0.0), vec2(0.0, 1.0));
    2. mat3 m3 = mat3(vec3(1.0, 0.0, 0.0), vec3(0.0, 1.0, 0.0), vec3(0.0, 0.0, 1.0));

    Matrices can also be built from a matrix of another dimension. There are two rules : If a larger matrix is constructed from a smaller matrix, the additional rows and columns are set to the values they would have in an identity matrix. If a smaller matrix is constructed from a larger matrix, the top, left submatrix of the larger matrix is used.

    1. mat3 basis = mat3(WORLD_MATRIX);
    2. mat4 m4 = mat4(basis);
    3. mat2 m2 = mat2(m4);

    Swizzling

    It is possible to obtain any combination of components in any order, as long as the result is another vector type (or scalar). This is easier shown than explained:

    It is possible to add precision modifiers to datatypes; use them for uniforms, variables, arguments and varyings:

    1. lowp vec4 a = vec4(0.0, 1.0, 2.0, 3.0); // low precision, usually 8 bits per component mapped to 0-1
    2. mediump vec4 a = vec4(0.0, 1.0, 2.0, 3.0); // medium precision, usually 16 bits or half float
    3. highp vec4 a = vec4(0.0, 1.0, 2.0, 3.0); // high precision, uses full float or integer range (default)

    Keep in mind that some architectures (mainly mobile) benefit a lot from this, but are also restricted (conversion between precisions has a cost). Please read the relevant documentation on the target architecture to find out more. In all honesty though, mobile drivers are buggy, so, to stay out of trouble, make simple shaders without specifying precision unless you really need to.

    Godot shading language supports the same set of operators as GLSL ES 3.0. Below is the list of them in precedence order:

    PrecedenceClassOperator
    1 (highest)parenthetical grouping()
    2unary+, -, !, ~
    3multiplicative/, *, %
    4additive+, -
    5bit-wise shift<<, >>
    6relational<, >, <=, >=
    7equality==, !=
    8bit-wise and&
    9bit-wise exclusive or^
    10bit-wise inclusive or|
    11logical and&&
    12 (lowest)logical inclusive or||

    Flow control

    Godot Shading language supports the most common types of flow control:

    1. // if and else
    2. } else {
    3. }
    4. // for loops
    5. for (int i = 0; i < 10; i++) {
    6. }
    7. // while
    8. while (true) {
    9. }

    Keep in mind that, in modern GPUs, an infinite loop can exist and can freeze your application (including editor). Godot can’t protect you from this, so be careful not to make this mistake!

    Fragment and light functions can use the discard keyword. If used, the fragment is discarded and nothing is written.

    Functions

    It is possible to define functions in a Godot shader. They use the following syntax:

    1. ret_type func_name(args) {
    2. return ret_type; // if returning a value
    3. }
    4. // a more specific example:
    5. int sum2(int a, int b) {
    6. return a + b;
    7. }

    You can only use functions that have been defined above (higher in the editor) the function from which you are calling them.

    Function arguments can have special qualifiers:

    • in: Means the argument is only for reading (default).
    • out: Means the argument is only for writing.
    • inout: Means the argument is fully passed via reference.

    Example below:

    1. void sum2(int a, int b, inout int result) {
    2. }

    Varyings

    To send data from the vertex to the fragment processor function, varyings are used. They are set for every primitive vertex in the vertex processor, and the value is interpolated for every pixel in the fragment processor.

    Certain values are interpolated during the shading pipeline. You can modify how these interpolations are done by using interpolation qualifiers.

    1. shader_type spatial;
    2. varying flat vec3 our_color;
    3. void vertex() {
    4. our_color = COLOR.rgb;
    5. }
    6. void fragment() {
    7. ALBEDO = our_color;
    8. }

    There are two possible interpolation qualifiers:

    Uniforms

    1. shader_type spatial;
    2. uniform float some_value;

    You can set uniforms in the editor in the material. Or you can set them through GDScript:

    1. material.set_shader_param("some_value", some_value)

    Note

    The first argument to set_shader_param is the name of the uniform in the shader. It must match exactly to the name of the uniform in the shader or else it will not be recognized.

    Any GLSL type except for void can be a uniform. Additionally, Godot provides optional shader hints to make the compiler understand for what the uniform is used.

    1. shader_type spatial;
    2. uniform vec4 color : hint_color;
    3. uniform vec4 other_color : hint_color = vec4(1.0);

    Full list of hints below:

    TypeHintDescription
    vec4hint_colorUsed as color
    int, floathint_range(min,max [,step] )Used as range (with min/max/step)
    sampler2Dhint_albedoUsed as albedo color, default white
    sampler2Dhint_black_albedoUsed as albedo color, default black
    sampler2Dhint_normalUsed as normalmap
    sampler2Dhint_whiteAs value, default to white.
    sampler2Dhint_blackAs value, default to black
    sampler2Dhint_anisoAs flowmap, default to right.

    GDScript uses different variable types than GLSL does, so when passing variables from GDScript to shaders, Godot converts the type automatically. Below is a table of the corresponding types:

    Note

    Be careful when setting shader uniforms from GDScript, no error will be thrown if the type does not match. Your shader will just exhibit undefined behaviour.

    As Godot’s 3D engine renders in linear color space, it’s important to understand that textures that are supplied as color (i.e. albedo) need to be specified as such for proper sRGB->linear conversion.

    Uniforms can also be assigned default values:

    A large number of built-in functions are supported, conforming to GLSL ES 3.0. When vec_type (float), vec_int_type, vec_uint_type, vec_bool_type nomenclature is used, it can be scalar or vector.

    Note

    FunctionDescription
    vec_type radians ( vec_type degrees )Convert degrees to radians
    vec_type degrees ( vec_type radians )Convert radians to degrees
    vec_type sin ( vec_type x )Sine
    vec_type cos ( vec_type x )Cosine
    vec_type tan ( vec_type x )Tangent
    vec_type asin ( vec_type x )Arc-Sine
    vec_type acos ( vec_type x )Arc-Cosine
    vec_type atan ( vec_type y_over_x )Arc-Tangent
    vec_type atan ( vec_type y, vec_type x )Arc-Tangent to convert vector to angle
    vec_type sinh ( vec_type x )Hyperbolic-Sine
    vec_type cosh ( vec_type x )Hyperbolic-Cosine
    vec_type tanh ( vec_type x )Hyperbolic-Tangent
    vec_type asinh ( vec_type x )Inverse-Hyperbolic-Sine
    vec_type acosh ( vec_type x )Inverse-Hyperbolic-Cosine
    vec_type atanh ( vec_type x )Inverse-Hyperbolic-Tangent
    vec_type pow ( vec_type x, vec_type y )Power
    vec_type exp ( vec_type x )Base-e Exponential
    vec_type exp2 ( vec_type x )Base-2 Exponential
    vec_type log ( vec_type x )Natural Logarithm
    vec_type log2 ( vec_type x )Base-2 Logarithm
    vec_type sqrt ( vec_type x )Square Root
    vec_type inversesqrt ( vec_type x )Inverse Square Root
    vec_type abs ( vec_type x )Absolute
    ivec_type abs ( ivec_type x )Absolute
    vec_type sign ( vec_type x )Sign
    ivec_type sign ( ivec_type x )Sign
    vec_type floor ( vec_type x )Floor
    vec_type round ( vec_type x )Round
    vec_type roundEven ( vec_type x )Round nearest even
    vec_type trunc ( vec_type x )Truncation
    vec_type ceil ( vec_type x )Ceil
    vec_type fract ( vec_type x )Fractional
    vec_type mod ( vec_type x, vec_type y )Remainder
    vec_type mod ( vec_type x , float y )Remainder
    vec_type modf ( vec_type x, out vec_type i )Fractional of x, with i has integer part
    vec_type min ( vec_type a, vec_type b )Minimum
    vec_type max ( vec_type a, vec_type b )Maximum
    vec_type clamp ( vec_type x, vec_type min, vec_type max )Clamp to Min-Max
    vec_type mix ( float a, float b, float c )Linear Interpolate
    vec_type mix ( vec_type a, vec_type b, float c )Linear Interpolate (Scalar Coef.)
    vec_type mix ( vec_type a, vec_type b, vec_type c )Linear Interpolate (Vector Coef.)
    vec_type mix ( vec_type a, vec_type b, bvec_type c )Linear Interpolate (Boolean-Vector Selection)
    vec_type step ( vec_type a, vec_type b )b[i] < a[i] ? 0.0 : 1.0
    vec_type step ( float a, vec_type b)b[i] < a ? 0.0 : 1.0
    vec_type smoothstep ( vec_type a, vec_type b, vec_type c )Hermite Interpolate
    vec_type smoothstep ( float a, float b, vec_type c )Hermite Interpolate
    bvec_type isnan ( vec_type x )Scalar, or vector component being NaN
    bvec_type isinf ( vec_type x )Scalar, or vector component being INF
    ivec_type floatBitsToInt ( vec_type x )Float->Int bit copying, no conversion
    uvec_type floatBitsToUint ( vec_type x )Float->UInt bit copying, no conversion
    vec_type intBitsToFloat ( ivec_type x )Int->Float bit copying, no conversion
    vec_type uintBitsToFloat ( uvec_type x )UInt->Float bit copying, no conversion
    float length ( vec_type x )Vector Length
    float distance ( vec_type a, vec_type b )Distance between vectors i.e
    float dot ( vec_type a, vec_type b )Dot Product
    vec3 cross ( vec3 a, vec3 b )Cross Product
    vec_type normalize ( vec_type x )Normalize to unit length
    vec3 reflect ( vec3 I, vec3 N )Reflect
    vec3 refract ( vec3 I, vec3 N, float eta )Refract
    vec_type faceforward ( vec_type N, vec_type I, vec_type Nref )If dot(Nref, I) < 0, return N, otherwise –N
    mat_type matrixCompMult ( mat_type x, mat_type y )Matrix Component Multiplication
    mat_type outerProduct ( vec_type column, vec_type row )Matrix Outer Product
    mat_type transpose ( mat_type m )Transpose Matrix
    float determinant ( mat_type m )Matrix Determinant
    mat_type inverse ( mat_type m )Inverse Matrix
    bvec_type lessThan ( vec_type x, vec_type y )Bool vector cmp on < int/uint/float vectors
    bvec_type greaterThan ( vec_type x, vec_type y )Bool vector cmp on > int/uint/float vectors
    bvec_type lessThanEqual ( vec_type x, vec_type y )Bool vector cmp on <= int/uint/float vectors
    bvec_type greaterThanEqual ( vec_type x, vec_type y )Bool vector cmp on >= int/uint/float vectors
    bvec_type equal ( vec_type x, vec_type y )Bool vector cmp on == int/uint/float vectors
    bvec_type notEqual ( vec_type x, vec_type y )Bool vector cmp on != int/uint/float vectors
    bool any ( bvec_type x )Any component is true
    bool all ( bvec_type x )All components are true
    bvec_type not ( bvec_type x )Invert boolean vector
    ivec2 textureSize ( sampler2D_type s, int lod )Get the size of a 2D texture
    ivec3 textureSize ( sampler2DArray_type s, int lod )Get the size of a 2D texture array
    ivec3 textureSize ( sampler3D s, int lod )Get the size of a 3D texture
    ivec2 textureSize ( samplerCube s, int lod )Get the size of a Cube texture
    vec4_type texture ( sampler2D_type s, vec2 uv [, float bias] )Perform a 2D texture read
    vec4_type texture ( sampler2DArray_type s, vec3 uv [, float bias] )Perform a 2D texture array read
    vec4_type texture ( sampler3D_type s, vec3 uv [, float bias] )Perform a 3D texture read
    vec4 texture ( samplerCube s, vec3 uv [, float bias] )Perform an Cube texture read
    vec4_type textureProj ( sampler2D_type s, vec3 uv [, float bias] )Perform a 2D texture read with projection
    vec4_type textureProj ( sampler2D_type s, vec4 uv [, float bias] )Perform a 2D texture read with projection
    vec4_type textureProj ( sampler3D_type s, vec4 uv [, float bias] )Perform a 3D texture read with projection
    vec4_type textureLod ( sampler2D_type s, vec2 uv, float lod )Perform a 2D texture read at custom mipmap
    vec4_type textureLod ( sampler2DArray_type s, vec3 uv, float lod )Perform a 2D texture array read at custom mipmap
    vec4_type textureLod ( sampler3D_type s, vec3 uv, float lod )Perform a 3D texture read at custom mipmap
    vec4 textureLod ( samplerCube s, vec3 uv, float lod )Perform a 3D texture read at custom mipmap
    vec4_type textureProjLod ( sampler2D_type s, vec3 uv, float lod )Perform a 2D texture read with projection/lod
    vec4_type textureProjLod ( sampler2D_type s, vec4 uv, float lod )Perform a 2D texture read with projection/lod
    vec4_type textureProjLod ( sampler3D_type s, vec4 uv, float lod )Perform a 3D texture read with projection/lod
    vec4_type texelFetch ( sampler2D_type s, ivec2 uv, int lod )Fetch a single texel using integer coords
    vec4_type texelFetch ( sampler2DArray_type s, ivec3 uv, int lod )Fetch a single texel using integer coords
    vec4_type texelFetch ( sampler3D_type s, ivec3 uv, int lod )Fetch a single texel using integer coords
    vec_type dFdx ( vec_type p )Derivative in x using local differencing
    vec_type dFdy ( vec_type p )Derivative in y using local differencing
    vec_type fwidth ( vec_type p )Sum of absolute derivative in x and y